

Learning toPlayVim

Matthieu Cneude

Learning to Play Vim
Copyright © 2024Matthieu Cneude
All rights reserved.

While every precaution has been taken in the preparation of this book, the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

Contents

Acknowledgments 11

Preface 12
Vim Or Neovim? That’s the Question . 12
What This Book is not About . 13
What You Need to Follow Along . 13
How To Get the Most Out of this Book . 14
Structure of the Book . 14
Notation Conventions . 15
Playing Vim: The Exercises . 16

Becoming a Vim Player 17
Vim is an Instrument . 17
The Power is in Your Fingers . 17
Efficient Typing: the Two Rules . 18

The First Week . 18
The SecondWeek . 19

Speed and Accuracy . 19
Keyboard Layouts . 19
Practice, Practice, Practice . 19

Rank I - Rookie 20
Vim: a Modal Editor . 20

The NORMAL Mode . 20
The INSERTMode . 21
The COMMAND-LINEMode . 22

Moving Around with Motions (NORMAL mode) . 24
Ditching the Arrow Keys . 24
Horizontal Motions . 25
Beginning, Middle, and End of Line . 26
Vertical Motions . 27

Undo and Redo (NORMAL mode) . 28
Operators, Motions, and Text-Objects (NORMAL Mode) 29

The Operators . 29
Operators andMotions . 29
Operators and Text-Objects . 30

Bending Vim to Your Will (Customization) . 32
TheMain Configuration File: the vimrc . 32
First Configuration . 33
Clipboard Management . 34
Improving Vim’s Defaults . 35
The Configuration Addiction . 36
Debugging Your Configuration . 36

Exercises . 38
Beyond the Rank . 39

Exercises - Solutions . 42

2

Rank II - Novice 46
EvenMore VimModes . 46

The VISUAL Mode . 46
The REPLACEMode . 48
More Keystrokes to Switch to INSERTMode . 49

Deleting In Vim (NORMAL mode) . 50
Delete, Yank, and Put . 50
Cross the Unwanted Characters . 51

Navigating Vim Help (COMMAND-LINEMode) . 52
Asking for Help . 52
Follow The Definition . 53
FindingWhat Your Heart Desire . 54

Configuring (Neo)Vim: What Language to use? (Customization) 55
Exercises . 57

Beyond the Rank . 57
Exercises - Solutions . 59

Beyond The Basics Solutions . 60

Rank III - Beginner 62
Searching in a File . 62

Vim Search in COMMAND-LINEMode . 62
Searching the Word Under the Cursor . 63

Count: Repeating Keystrokes (NORMAL mode) . 65
VimMessages (COMMAND-LINEmode) . 67
Vim Options (Customization) . 69

Setting Options . 69
Persisting an Option’s Value . 73
Searching an Option in Vim Help . 73
Some Useful Options . 74

Exercises . 76
Beyond the Rank . 77

Exercises - Solutions . 78

Rank IV - Aspirant 80
Vim’s Space: Buffers, Windows, and Tabs . 80

Vim Buffers . 80
VimWindows . 87
Vim Tab Pages . 90

Scrolling (NORMAL mode) . 93
Ranges for Ex Commands (COMMAND-LINEMode) 93

The Line Specifiers . 94
Ranges and VISUAL Mode Selection . 95

Creating Your OwnMappings (Customization) . 96
Creating Mappings for Different Modes . 96
Nested and Recursive Mapping . 97
Deleting a Mapping . 98
Mapping and Key Notation . 99
The Leader Key . 100
Ambiguous Mapping . 102
Some First Mappings . 102
Finding Customized Mappings . 103

Exercises . 105
Beyond the Rank . 106

Exercises - Solutions . 109
Exercise Solutions . 109

Rank V - Intermediate 113
Vim Registers . 113

How to Use the Registers . 113

3

The Different Types of Registers . 115
Using Registers in Practice . 119

Jumping Around (NORMAL mode) . 120
The Jump List . 120
The Change List . 121
Jumping to Matching Elements . 121
Jumping Paragraphs . 122
JumpingMethods . 122

The Command-Line History (COMMAND-LINEmode) 124
Extending Vimwith Plugins (Customization) . 125

A Plugin to Manage Plugin . 126
Installing New Plugins . 126

Exercises . 128
Beyond the Rank . 129

Exercises - Solutions . 131

Interlude I - Useful Vim Plugins 135
Neovim and External Dependencies . 135
Plugins Extending Vim’s Functionalities . 135
Tree View of Your Filesystem . 136
Completion, Auto-Completion, and Jump to Definition 136
Snippets . 137
The Status Line . 138
Vim Color Scheme . 138

Rank VI - Competent 139
Repeating Changes . 139

Single Repeat . 139
Complex Repeat: Recording a Macro . 141

Editing in INSERTMode . 147
Moving the Cursor From Line to Line . 147
Inserting and Deleting . 148
Copying Characters From Adjacent Lines . 148
Indenting . 148
The NORMAL mode in INSERTmode . 149

Editing in COMMAND-LINEmode . 150
Copying From a Buffer to the COMMAND-LINE 150
Multiple Ex Commands on One Line . 150

Mapping Special Arguments (Customization) . 152
Using Ex commands in Mapping . 153
Silencing a Mapping . 153

Exercises . 156
Beyond the Rank . 157

Exercises - Solutions . 159

Rank VII - Proficient 164
Navigating a Project . 164

The Current Working Directory . 164
Changing the Global Working Directory . 165
The Local Working Directories . 166
Searching for a File . 166

Formatting Text (NORMAL mode) . 171
Internal Formatting Functionalities . 171
FormattingWith an External Program . 175

Search and Replace With Substitute (COMMAND-LINEmode) 178
How to Substitute your Text . 178
The Substitute Flags . 179
Using Different Separators . 180

The Scopes of Mappings and Options (COMMAND-LINEmode) 182

4

Option Scopes . 182
Global and Local Options in Your vimrc . 183
Local Mappings for Buffers . 185

Exercises . 188
Beyond the Rank . 189

Exercises - Solutions . 192

Rank VIII - Seasoned 196
Searching in Multiple Files . 196

Vim Internal Search: vimgrep . 196
Using an External Program . 199

Indenting Your Text (NORMAL mode) . 201
Keystrokes for Indenting . 201
Controlling the Indentations . 202
Displaying Invisible Characters . 203
IndentingWith an External Program . 204

Charwise, Linewise, or Blockwise? (VISUAL Mode) 205
The Types of VISUAL Mode . 205
Visual Mode Charwise and Linewise . 206
Visual Mode Blockwise . 207

Advanced Search in a Buffer (Command-Line Mode) 209
SearchWith Case Sensitivity . 209
Displaying the Number of Results . 210
Find and Replace One Occurrence at a Time . 210
Repeating the Last Search . 211
Search Highlighting . 212

Writing Custom Functions (Customization) . 213
Vimscript Functions . 213
Lua Functions . 216

Exercises . 220
Beyond the Rank . 221

Exercises - Solutions . 223

Rank IX - Adept 230
The Quickfix Lists and Location Lists . 230

The QuickfixWindow . 230
The Location List . 231
Creating Quickfix Lists . 231
Creating Location Lists . 232
Navigating the Current Quickfix List . 232
Creating Quickfix Lists Using Vimscript Expressions 233
Valid Entries for Quickfix Lists . 234
Valid Entry When Grepping . 235
Executing Ex Commands on Quickfix List Entries 236
Opening Old Quickfix Lists . 237
Filtering the Current Quickfix List . 239

Changing Case (NORMAL mode) . 240
The Shell Power in Vim (COMMAND-LINEmode) 242

Executing Shell Commands . 242
Inserting Shell Command Output in the Current Buffer 244
Filtering Your Buffer Using a Shell Command 244
Using Vim Bars With Shell Commands . 247

The Ex Command Execute (Customization) . 247
Exercises . 250

Beyond the Rank . 251
Exercises - Solutions . 253

Interlude II - More Useful Vim Plugins 259
A Fuzzy Finder to Find Them All . 259

5

Git Integration . 260
Linters for Vim . 260
Manipulating Buffers andWindows . 260

Closing Buffers Without ClosingWindows . 260
A NewMode to Manage Windows . 261

Extending VimMotions . 261
Displaying an Outline . 261
A Debugger in Vim . 262

Rank X - Believer 263
Vim Regular Expressions . 263

A Brief Return to Basics . 264
The Concept of Atom . 266
Vim’s “Magical” Patterns . 266
Word Boundaries . 267
Character classes and Vim Options . 267
Greedy and Non-Greedy Identifiers . 268
Vim Lookaround Assertions . 269
Regexes Matching OnMultiple Lines . 271
Only Matching the Visual Selection . 271

Manipulating Numbers (NORMALmode) . 273
The Global Ex Command (COMMAND-LINEmode) 274

Basics . 274
Useful Examples . 275
Global Command and Substitution . 277

Autocommands (Customization) . 279
Basics . 279
Multiple Events and Patterns . 279
Autocommand Groups . 280
Ignoring Events . 282

Exercises . 284
Basics . 284
Beyond the Basics . 284
Solutions . 285

Rank XI - Veteran 286
Marks . 286

Basics . 286
Read Only Marks . 287
Special Marks . 287
Regexes andMarks . 288

Absolute and Relative Line Numbers (NORMALmode) 289
Switching Between Absolute and Relative Line Number 290

From INSERT to NORMALMode for One Command (INSERTmode) 292
The Normal Ex Command (COMMAND-LINEmode) 292

The Normal and Global Ex Command . 293
The Normal Ex Command and Special Keys . 293
TO SORT . 294

User Commands (Customization) . 296
Basics . 296
Attributes for User Commands . 296

Exercises . 299
Basics . 299
Beyond the Basics . 299
Solutions . 299

Interlude III - Vim Runtime 300
Vim’s Startup . 300

Startup’s Order . 300

6

Profiling Vim’s Startup . 301
Special Environment Variables . 301

The Runtime Path . 302
Important Runtime Paths . 302
Subdirectories of the Runtime Paths . 302
Autoloading Functions . 303
The Directory after . 305
The Runtime Command . 306
Disabling Runtime Files . 306

The Startup Has Been Revealed . 306

Rank XII - Vim for Experts 307
Undo In Depth . 307

Persisting Undo . 307
The Undo Tree . 308
Creating Undo Nodes . 310

Abbreviations (INSERTmode) . 312
Basics Ex Commands . 312
Replacing andMoving the Cursor . 313
Abbreviations andMapping . 314
Verbose . 314

The Operator PendingMap (Customization) . 315
Exercises . 317

Basics . 317
Beyond the Basics . 317
Solutions . 317

Rank XIII - Champion 318
Folding . 318

Fold Options . 318
Choosing Your Fold Method . 318
NORMAL Mode Keystrokes . 319
Opening and Closing Folds with Ex Commands 320
Folding Tips . 320

Digraphs (INSERTmode) . 321
Special Strings for Vim Commands (COMMAND-LINEmode) 322
The viminfo and shada Files (Customization) . 324
Exercises . 327

Basics . 327
Beyond the Basics . 327
Solutions . 327

Interlude IV - Vimscript and Lua 328
When Using Lua? . 328
Lua in Vimscript Files . 328
Lua scripts . 329
Lua API . 330
Interoperability: Vimscript From Lua . 330
Testing and debugging . 330
Global Functions . 331
Vim Loop . 331
Often Used Lua Functions . 331

Rank XVI -Master 332
Syntax Highlighting . 332

Enabling and Disabling Syntax Highlighting 332
Color Schemes . 333
Highlight Groups . 333
Linking Highlight Groups . 336

7

Creating Syntax Groups . 337
The Verbose Command . 338
Troubleshooting for Syntax Highlighting and Big Files 338

Displaying Useful Information About File and Cursor Position (NORMALmode) 339
Diff Demystified (NORMAL mode) . 340

Beginning a Diff . 340
Configuring Diffs with An Option . 341

Debugging Vimscript & Lua (Customization) . 343
Verbosity . 344
The DebugMode . 345

Exercises . 347
Basics . 347
Beyond the Basics . 347
Solutions . 347

Rank XV - GrandMaster 348
Compiling and Linting . 348

Running a Binary Against Your Code . 348
Running the Executable . 349
Parsing Error Messages . 350
Creating a Compiler for Lua . 351

Completion in Vim (INSERTmode) . 353
The Completion Submode . 354
Scrolling in INSERTMODE . 355
The Complete Option . 355
The Omni-completion . 356

The Arglist (COMMAND-LINEmode) . 357
Practical Use: Find and Replace in Multiple Files 358

Managing Plugins in Vanilla Vim (Customization) 359
The Vim Native Package Manager . 360
Installing New Plugins . 361
Loading Plugins on Demand . 362

Exercises . 363
Basics . 363
Beyond the Basics . 363
Solutions . 364

The File Manager netrw 365
Opening netrw . 365
Browsing . 368

Basics . 368
Display . 368
Filtering Display . 369
Listing the Browsing History . 369

Marking Files And Directories . 370
Managing Files and Directories . 371

Creating and Deleting . 371
Renaming Files or Directory . 371
Copying Files . 372
Moving Files . 372
File Permissions . 372

Opening Files with External Applications . 372
Bookmarking . 373
Remote Operations and Protocols . 373

Using scp via SSH . 374
Using HTTP (read only) . 375
Listing Directories . 375
Obtaining a file . 375

8

FTP . 375
The NETRC file . 376

CustomizingMapping . 376
Overwriting Variables and Functions . 377
Command Line Editing . 377
TODO . 377

Rank XVI - Hero 378
Vim’s Spelling . 378

Basics . 378
AddingWords to Spell Files . 379
Fixing Spelling with Word Suggestions . 381
Navigating Through Your WrongWords . 382

Advanced Macro (NORMAL & VISUALmode) . 383
Visual ModeMacro . 383
Creating Mapping fromMacros . 385
Recursive Macro . 386

Redirections (COMMAND-LINEmode) . 387
Improving Vim Performances . 389

General Profiling . 389
Startup Profiling . 389
Profiling Syntax Files . 390

Exercises . 391
Basics . 391
Beyond the Basics . 391
Exercice xxxx - Advanced Macro . 391
Solutions . 391

Rank XVII - Godlike 392
Jumping to Definition . 392

Vim and ctags . 392
Completion with tags . 394
Include Search . 395

Saving Settings and Vim Sessions (COMMAND-LINEmode) 400
Saving Vim’s Options andMapping in a File . 400
Creating and Loading a Session . 401
Fine Tuning Vim’s Sessions . 402

Setting Your Status Line (Customization) . 402
Status Line Options . 402
A Concrete Example . 404
Status Line Separator . 405
Setting your Tab Line . 406

Exercises . 410
Basics . 410
Beyond the Basics . 410
Solutions . 410

Rank XVIII - Composer 411
Restoring the Cursor Position . 411
Loading Specific Configuration Per Project . 412
Opening a Window Fullscreen . 412
Output Redirection into a Scratch Buffer . 416
Git Information From the Current Line . 422

Displaying in the Command Line Window . 422
Creating a Popup . 423

CONCLUSION . 424

9

Preface

It has been said, time and time again, that using Vim (or Neovim) is a challenge only the most
powerful wizards of the sword coast can tackle.

I disagree. Vim can be used by anybody. You just need to put what you know about text editors
on the side for a little while. Vim works differently indeed; and that’s why it’s powerful.

It’s easy to learn the basics of Vim. In fact, the first chapters of this book are enough for you to
edit any text file.

But it’s also true that Vim takes time to master. You can improve your workflow each time you
use Vim if you want to. It’s a benefit, not a drawback. Tome, Vim is the gamification of writing:
I can focus on my writing 90% of the time, and I’ll spend the last 10%messing around, trying
to makemy editing power even greater while having fun.

This is what this book is about: we’ll go on the quest to discover (or re-discover) the Best Text
Editor in the World™. And, more importantly, trying to have fun too!

This book can be read by any Vim enthusiast out there, from the perfect beginners who want to
write their autobiographies in 25 tomes using Vim, to the developers using Vim for 25 years and
still trying to improve their workflows. Whoever you are (a fine human being I’m sure!), I’m
confident you’ll learn something new here.

Now, if you’re an innocent beginner, a question will quickly arise: should you use Vim or
Neovim?

VimOrNeovim? That’s theQuestion
Vim is itself the product of different text editorswhich camebefore it. At one point in time, some
developers decided that Vim needed to take another direction moving forward. They basically
took Vim source code and created Neovim.

As a result, both Vim and Neovim are very similar. At the same time, they have noticeable dif-
ferences too.

I’ll use the name “Vim” throughout this book to speak about both Vim and Neovim. That said,
if one option or command works for one but not the other, I’ll always specify it in this book.

We can expect even more differences between Vim and Neovim as time passes. For now, here
are the main ones:

1. Vimuses the scripting language Vimscript for its configuration. WithNeovim, you can use
Vimscript or Lua; Lua is a simpler (and more consistent) scripting language to configure
everything.

12

https://www.vim.org/
https://neovim.io/
https://vimdoc.sourceforge.net/htmldoc/usr_41.html
https://www.lua.org/about.html

2. Neovim has some sane defaults, while Vim needs to be configured a bit more extensively.
On top, you might need to compile Vim with the features you want, while Neovim include
most things you’ll need by default.

3. There are manymore tools available in native Neovim for software developers: it supports
LSP (Language Server Protocol) out of the box for example, or treesitter to enable a more
powerful syntax highlighting.

Also, Neovim is evolving faster than Vim, which is a good and a bad thing. It’s good because new
functionalities are often added, but it’s also bad because your configurationmight get outdated,
and, in the worst case, break some functionalities. You basically need to debug your configura-
tion in that case.

All in all, I would recommend you to use Neovim, only to be able to use some Lua for more ad-
vanced configuration. That said, if you want to write prose instead of writing code, Vim will be
more stable without major disadvantages.

In this book, I provide both Vimscript and Lua for everything we’ll configure. If you stick to
Vimscript, you can switch between Vim and Neovim if you change your mind later in your jour-
ney. In practice, there are little advantages to write all your configuration in Lua; this language
is only useful more advanced customization.

We’ll discuss all of that in more details in the book.

In a nutshell: don’t stress it. Pick Vim or Neovim, you’ll be able to transfer what you’ll learn
from this book from one editor to the other.

WhatThis Book is notAbout
First and foremost: this book is only about Vim (or Neovim) running in a Unix-like shell, in a
terminal. I strongly believe that Vim is most powerful in this context. As a result, I won’t speak
about Vim with Graphical User Interfaces (GUIs).

You’re also at the wrong address if you want to learn Vimscript 9 (the new Vimscript introduced
in Vim 9, but not available in Neovim): I have no clue about it, and I won’t cover it here.

I won’t describe the shell and its functionalities in this book. That said, if you’re interested to
learnmore about the shell, and,more generally, about the tools you canuse to create aMouseless
Development Environment, it’s the best moment for me to plug in there my other book. It’s my
life mission to spread the love of the keyboard. I’m only getting started here.

Vim and Neovim can be extended with external plugins. While I’ll give youmy personal recom-
mendations, this book is not about plugins, but more about Vim’s vanilla functionalities.

Finally, this book is not about re-creating your favorite IDE in Vim. Your IDE is your IDE, and it
will always be different, even if you install an unhealthy amount of plugins. That said, coupled
with the power of the shell, you can definitelymake Vim (especially Neovim) looking a lot like a
streamlined IDE.

WhatYouNeed to FollowAlong
As I was writing above, this book is specifically about Vim running in a terminal: you’ll need a
shell like GNU Bash or Zsh. If you’re usingmacOS or any Linux distribution, you already have a

13

https://themouseless.dev/
https://gnu.org/software/bash/
https://www.zsh.org/

shell. If you’re usingWindows, there are Unix-like shells available for this platform too.

Of course, to follow along, you also need Vim or Neovim installed. Then, in your shell, you can
simply run the command vim to open Vim, or nvim to open Neovim. You can also open a file if
you give its filepath as argument; for example, vim functions.lua .

Finally, you’ll need the book companion available on GitHub to follow along. You can clone it
directly in your shell if you knowhow to do that, or you can download it directly from theGitHub
repository (click on the code button, and then on Download ZIP).

That’s it!

HowToGet theMostOut of this Book
For this book not to fail your expectations, let me give you some recommendations here. Of
course, you don’t have to follow any of them: you can read this book from the first to the last
page passively like a novel, read a page every three pages, or even toss it near your toilets to
never open it again. It’s up to you.

Themost important advice: try to use the book companion in Vim, and experiment with all the
commands and keystrokes we’ll see in this book. This is called active learning: it’s better than
reading passively without trying anything in Vim. This is even better than doing the exercises.

You can also create your own cheatsheet, addingwhat you’re learning as yougo along. Again, it’s
different from getting any cheatsheet made by somebody else: it will be yours and, as a result,
it will help you learn and consolidate your knowledge in your long termmemory.

Writinghas apowerful effect: itmakes someexternal knowledge truly yours. I can’t recommend
it enough!

In that regard, writing not only a cheatsheet but a whole practice journal can be beneficial too.
It’s basically a journal helping you track your learning: what you’re working on, or what you
want to work on for example. You can write about the blockers you find in the way, the research
you do on the side, and so on. You can also go back to your journal to refresh your memory.

You can even write your practice journal in Vim to create The Ultimate Feedback Loop of Learn-
ing©!

I’ll never repeat it enough: try to have fun! Learning something shouldn’t be a chore, and it’s
also true for Vim. You don’t need to try to learn everything all at once. Only reading this book
from 10 to 30minutes a day can be enough; the important thing is to stay consistent. It’s better
to try to learn Vim for 20minutes every two days, than 10 consecutive hours every twomonths.

Structure of theBook
The book is not divided in chapters, but in “ranks”. It’s because I wanted the book to have some
sort of progression, from the basic concepts to more advanced ones. When you see that I speak
about a “rank”, think of it as a chapter.

Each rank build on the knowledge of the previous ones. That’s why there will bemore andmore
references to past ranks as you go throughout the book. I also refer to the future ranks quite
often, for you to check them out at your leisure.

14

https://github.com/Phantas0s/learning_to_play_vim_companion
https://github.com/Phantas0s/learning_to_play_vim_companion
https://github.com/Phantas0s/learning_to_play_vim_companion

The first section of each rank will be about something big and important, and I’ll often cover
more than onemode there (we’ll see Vimmodes in rank I). The other sectionswill often be about
onemode specifically, or about customizingVim. This information is always included in the title
of the section.

NotationConventions
Vim has a powerful help system embedded in the editor; we’ll come back to that in rank II. It
uses specific notations for different ideas, and this book use most of them:

Notation Description

[] Placeholder for an optional part of a command.
{} Placeholder for a required part of a command.
<character> Key notation for a special character.
CTRL-{character} Keystroke notation where you need to hold CTRL and hit {character} .
CTRL-{character1} {character2} Keystroke notation where you need to hold CTRL and hit {character1} .

Then, release CTRL and hit {character2} .
{mode}_CTRL-{character} Keystroke notation for a specific {mode} .
'number' Vim option

Let’s look at some examples:

Example Description

:set {option} The argument {option} is mandatory.
:[range]delete The prefix [range] is optional.
<esc> The “escape” key.
<enter> The “enter” key.
CTRL-v You need to hit and hold the CTRL key first, and hit v .
i_CTRL-v You need to hit and hold the CTRL key first, and hit v

in INSERTmode.
CTRL-w s You need to hit and hold the CTRL key first, and hit w .

You can then release the CTRL key from your mighty pressure,
and hit the s key.

w You need to hit the w key.
W You need to hit the W key (the uppercase of w).
d$ You need to hit the d key, and then the $ key.
:write<enter> You need to hit : , then the five letters

write consecutively, and then the ENTER key.

In this book, the word “keystroke”means a set of key(s) which can be pressed at the same time,
or consecutively.

We won’t use often the keystroke notation including the mode in this book (for example
i_CTRL-v). That being said, Vim help use the same notation, so it’s useful to be aware of it if
you want more information about a keystroke which is not in NORMAL mode.

15

Regarding the key notation for special characters, Vim help oftenmix uppercase and lowercase;
for example, <Esc> , <PageUp> , or <BS> . It’s annoying; that’s why this book always uses low-
ercase for this notation. The case doesn’t change anything anyway: <ESC> , <Esc> or <esc>

are equivalent.

This book will also try to help you remember the different keystrokes you can use in Vim, by
linking themwithwhat they’re doing. For example, to link“w”with“word”, the“w”of“word”
will be underlined as follows: “word”. It’s to remember that, when you hit “w” in NORMAL
mode, you would move one “word” forward.

If you’re new to Vim, youmight have no idea what we’re speaking about here. No worries: we’ll
look at all these concepts in more details down the line. Just remember that, if you have diffi-
culties to understand the notations of this book, you can always come back here to lighten your
burden.

PlayingVim: TheExercises
Here are some general rules regarding the many exercises scattered all over the book:

1. The exercises at the end of some sections are the easiest ones.
2. The exercises at the end of a chapter (rank) go a bit deeper in each topic.
3. The exercises in the section “beyond the rank” are harder. They often introduce comple-
mentary concepts from the ones seen in the current rank. You’ll often need to look at Vim
help to solve them.

4. The solutions come after the rank itself.
5. After finishing an exercise and before beginning another one, always undo your changes.
If you have Git installed on your system, running the shell command git checkout * in
the root directory of the book companion you’ve downloaded should be enough.

I tried to give the best solutions for each exercise, but it’s likely there are other (and better) ones.

This book is full of information. Iwouldn’t advise you to try to remember everything, justwhat’s
useful for you. If you don’t really knowwhat’s useful, the exercises at the end of each section can
show you the most important points.

When it comes to notation for the exercises, in many of them you’ll see a black square. It repre-
sents the cursor position. For example:

This is some text and the cursor is on the "t" of "text".

This square indicateswhere you should put your cursor before beginning the exercise. That said,

your specific cursor might not be represented as a block in your terminal, but as a line | . In

that case, simply put your cursor just before the letter highlighted. To come back to our example
above, if your cursor looks like a line, you need to place it before the letter t of text :

This is some |text and the cursor is on the "t" of "text".

Enough rambling. Let’s now begin our journey in Vim Land.

16

https://github.com/Phantas0s/learning_to_play_vim_companion

BecomingaVimPlayer

Before diving into Vim itself, it’s important to understand howVim can help you in yourwriting
or in your coding. It’s also a good occasion for me to justify the weird title of this book.

Vim is an Instrument
It’s how I see Vim: as an instrument. Like a musical instrument, it can be challenging to under-
stand, but it won’t get in the way to create what you want to create.

After all, a pianist doesn’t actively think about all the notes available when playing. Instead, if
she’s sufficiently trained, her movements will be automatics, to some degree, allowing her to
focus solely on the music. Vim also relies on your muscle memory for you to focus on the most
important: you’re writing.

The concept of a piano is simple to understand. If you hit a key, you’ll hear a note. Yet, from
these simple keys you can build chords, scales, and melodies. It’s similar with Vim: it’s quite
easy to use, but hard to master. You’ll be able to compose the basics command to create more
complex and powerful ways to write and edit your texts.

Finally, like an instrument, Vim is fun to use. First, because you only need to use your keyboard
to do so; no need of anything else, like themouse. It allows you to focus onwhat you really want
to do without your editor going in the way. It’s rewarding and fulfilling.

ThePower is in Your Fingers
As we just said, Vim allows you to write and edit your text only using your keyboard. No need to
spend your time pointing and clicking with yourmouse. Yet, it’s normal to use amouse to write
some text formost (my younger self included). I’m now convinced (and I have the experience to
back it up) that we don’t need a mouse to write; only using the keyboard is easier. It’s changing
our habit which can be hard.

When you are in a state of flow, focused on your craft, you don’twant to be interrupted every five
minutes by moving your hand to the mouse, or by looking at your fingers. You shouldn’t have
to do any of that. You should only care about what you’re creating.

Before being able to use a piano, you need to know how to place your hands properly on the keys
to be as effective as possible. It’s again similar with Vim: knowing how to type efficiently on a
keyboard is a stepping stone to master a keyboard driven workflow.

You can practice the techniques we’ll see next while reading the rest of the book. It will be diffi-
cult at the beginning, but stick to it as much as you can. You won’t regret it.

17

Efficient Typing: the TwoRules
It’s satisfying to see your typing techniques improving days after days, months after months,
and even years after years. Like Vim, these techniques are easy to learn but difficult to master.

The first rule for a good typing: placing your hands correctly. The keys a , s , d , f as well as
the keys j , k , l , ; are called the rowkeys. They are the starting points for your hands. From
there, you’ll be able to grab any other key as efficiently as possible.

You’ll notice that there are little bumps on the keys f and j on your keyboard. They are indi-
cators for you to know where you need to put your indexes. When they are at the good position,
simply place the other fingers on the other row keys, as shown on the illustration below.

The second rule you need to train for: try not looking at your keyboard while you’re typing. Of
course, if you don’t remember where a key is, look at it, but only after trying blindly where you
think it is. We want to train your muscle memory here.

I was only typing with two fingers before trying to follow these two rules. It felt really weird at
first; now, I wouldn’t type differently. It’s efficient, it’s comfortable, it’s great!

The FirstWeek
When you decide to use the two rules we saw above, you need to try to follow them all the time.
We need 100% commitment here. If you surprise yourself using your bad technique again,
which will happen, don’t worry: simply come back to the good one. This is part of the learning
process, not a horrible failure cursing your whole family on five generations.

Thefirst three days are themost difficult. You’ll alternate between good and bad techniquewith-
out even noticing it. You’ll do mistakes. You’ll be slower. That’s great! It’s how you’ll learn.

18

Fortunately, at the end of the week, the amount of mistakes you’ll make will decrease, and the
need to watch the keyboard will slowly disappear.

The SecondWeek
You’ll notice during the second week the amount of mistakes decreasing even more, and you
won’t dare look at your keyboard while typing anymore. At the end of the week, you’ll see your
typing speed improving already. A rewarding pleasure will begin to surge in your brain. That’s
what we all want.

SpeedandAccuracy
During your twoweeks of initial training, you shouldn’t focus on speed or accuracy. Just type, as
much as you can, and don’t worry about anything else yet. Not even about the mistakes you’re
making.

Only then, when you feel comfortable enough, you can shift your focus on speed and accuracy:
how fast you can type while making as fewmistakes as possible.

Keyboard Layouts
You noticed that I’m only covering the US international keyboard layout here. If you use another
one, the same principles apply. The row keys are at the same position too; only the keys them-
selves change.

A last tip: if you don’t use your Caps Lock key often, try to remap it to something more useful.
Vim users hit their Escape keys again and again, so it’s a good candidate. Depending on the
operating system you’re using, you could also remap the Caps Lock key for acting as Ctrl when
you hold the key, and Escape when you briefly hit it. It’s howmy Caps Lock key behave, and it’s
awesome. I can’t recommend it enough.

Practice, Practice, Practice
As always, to learn as fast as possible, you need to practice. Again, this book ask you to use your
keyboard extensively, so you’ll have many occasions to practice.

You can also use some typing software to have concrete data about your speed and accuracy. Here
are my favorites:

• Type Racer
• Online Typing Test WPM
• Speed Coder

19

https://play.typeracer.com/
https://www.keyhero.com/
http://www.speedcoder.net/

Rank I -Rookie

This is where our adventure begins: on the shores of the most basic functionalities Vim has to
offer. If you try to actively understand the concepts explained in the first two ranks, you’ll be
able to use Vim for yourwriting. It won’t replace your favorite text editor or your IDE right away;
but it will be enough to edit simple text files (like configuration files, for example).

We’ll see, in this chapter:

• The basic Vim modes. This is primarily what makes Vim so different from any other text
editor.

• How to move your cursor around, only using your keyboard.
• How to use the “language of Vim”. Said differently, what are operators, motions, and text-
objects.

• How to undo and redo your changes.
• How to configure Vim.

I recommend you to open the file “functions.lua” in Vim from the book companion and try to
experiment with the different examples given here. To do so, move to the root directory of the
book companion, and run vim functions.lua in your shell (or nvim functions.lua if you use
Neovim).

I see that you’re bursting with anticipation: let’s not wait any longer.

Vim: aModal Editor
Vim is a modal editor: depending on the mode you’re in, the different keys you’ll hit on your
keyboard will have different effects. This is the first big difference with more mainstream text
editors, and arguably one of the biggest reason why Vim is so beloved and so powerful.

The twomodes you’ll use the most are:

1. The NORMAL mode.
2. The INSERTmode.
3. The COMMAND-LINEmode.

It’s important to understand their purposes to use Vim efficiently.

TheNORMALMode
Normally, after openinga text editor, you candirectly type anythingyouwant to see yourwriting
appearing on the screen. Nothingmore basic; yet, it doesn’twork like that inVim. It’swhymany
beginners are confused when they try to use Vim for the first time.

20

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

To understand what I mean, try to open Vim. You’ll see a welcome message. Now, if you try to
hit the letter “x” on your keyboard, no “x” will appear on the damn screen.

It’s because Vim always start in NORMALmode by default. This mode is not meant to insert new
text, but to edit already written text.

To really understand what I mean, it’s best to begin by what you already know. Let’s say that
you want to replace a portion of some existing text using a more mainstream text editor. To do
so, you would often need to:

1. Use the mouse andmove your pointer to the portion of text you want to edit.
2. Click on your mouse to move your cursor (or to select some text).
3. Write whatever you want with your keyboard.

This way of working is quite intuitive, but not very efficient. If you know your editor well, you
might also knowsomekeyboard shortcuts to increase your efficiency. For example, inmany text
editors out here, instead of using your mouse to move your cursor, you could:

1. Use a keyboard shortcut (like CTRL-f for example) to search the word you want to edit.
2. Delete the word with the DELETE () key.
3. Write whatever you want with your keyboard.

Why using keyboard shortcuts ismore efficient? Even if we still need three steps to edit our text,
we don’t need to use themouse in the second example. It’s better for your hands (nobodywants
carpal tunnel syndrome), it’s more comfy, and it’s also more efficient.

This is basically the purpose of Vim’s NORMALmode: because it’s not used to write any text, ev-
ery single key on your keyboard is a keyboard shortcut, offering youmany different commands
to move your cursor and target the exact piece of text you want to edit.

Said differently, Vim’s NORMAL mode is a keyboard-centered way to control your editor, telling
Vim what you want to do, and it will obey your mighty will. You’ll soon become a God (or God-
dess), and Vimwill be your slave.

But if there are evenmore NORMALmode commands than keys on a keyboard, how is it possible
to remember them all? Believe it or not, these commandsmake sense in Vim (most of the time)
compared to the usual andmeaningless shortcuts you’ll find in other editors.

Vim’s NORMAL mode commands use mnemonics for you to build some muscle memory. Even
better: they are composable; you can combine someof them in a logical, easy-to-rememberway.
A bit like you would use different notes on a piano to create a melody.

Let’s take for example the shortcut CTRL-N from a random editor. By only looking at it, you’ve
no ideawhat it does. In contrast, you’ll see soon that it’s possible to guesswhat a NORMALmode
command does in Vim.

Enough theory and metaphors: it’s time to practice. We first need some text to edit, so let’s
insert some text first. To do so, let’s switch to the second most important mode, the INSERT
mode.

The INSERTMode
Let’s now hit our first NORMALmode command, which will switch Vim from NORMALmode to
INSERTmode.

Simply hit i on your keyboard.

21

https://www.medicalnewstoday.com/articles/184337

Depending on the editor you use (Vim or Neovim), and how your terminal is configured, the
shape of your cursor might change. More importantly, you’ll see -- INSERT -- in the bottom
left corner of Vim.

Welcome to INSERTmode!

You’re now able to type the text you always wanted to bring on your screen. Go ahead, don’t be
afraid: type anything youwant, like youwould do in any other editor. At the end, Vim is not that
different.

Now, let’s try to hit the ESCAPE key. The indicator -- INSERT -- disappears.

Welcome back to NORMAL mode!

That’s exactlywhat do aVimusermany times during awriting session: switching betweenNOR-
MAL mode to edit existing text, and INSERTmode to insert new text.

TheNORMALmode command a can also let you switch to INSERTmode, but itwill do it after the
character you’re on. Try it to see the difference! Remember: to switch back to NORMAL mode,
simply hit ESCAPE .

That’s what I’m talking about when I say that Vim uses mnemonic for the NORMAL mode com-
mands: i for insert, a for insert after.

To summarize what we’ve just seen:

Keystroke Description

i Switch from NORMAL mode to INSERTmode.
a Switch from NORMAL mode to INSERTmode

after the character under the cursor.
<esc> Switch back from another mode to NORMAL mode.

You can see here that I use the notation <esc> representing the ESCAPE key. As we saw in the
preface, keystrokes with special characters in this book are surrounded with <> .

There aremoreNORMALmode commands allowingus to switch to INSERTmode. We’ll see them
in rank II; for now, the ones above should be enough.

TheCOMMAND-LINEMode
TheNORMAL and the INSERTmodes are the ones you’ll usemost often. Followingmy subjective
order of importance, we’ll find a third mode, the COMMAND-LINEmode.

Now, youmight have noticed that we were speaking about NORMALmode commands until now.
What’s this COMMAND-LINEmode? A new way to enter commands? Well, kind of.

In NORMAL mode, you can hit NORMAL mode commands; in COMMAND-LINE mode, you can
execute Ex commands. The word “command” is used differently here depending on the mode,
and, as a result, this word becomes quite confusing. That’s why I’ll speak about NORMAL mode
keystrokes, instead of NORMAL mode commands in this book. That said, be aware that many
other resources about Vim (including Vim help) often speak about NORMAL mode commands.

Let’s go back to our newmode, the COMMAND-LINEmode. First, to switch to COMMAND-LINE
mode, you need to use the NORMAL mode keystrokes : . To come back to normal mode, you
need again to hit the <esc> key.

22

Whenyou switch to COMMAND-LINEmode, your cursormoves automatically at the very bottom
of Vim, just after a colon : , indicating that you can write and run an Ex command.

You can think of Ex commands as the menu you would normally go into in a more mainstream
text editor, often using yourmouse. For example, you can use the COMMAND-LINEmode to save
your file, or to search and replace some text.

Here are some basic ones:

Ex command Short name Description

:write :w To write (save) the current open file.
:edit {filepath} :e {filepath} To edit the file located at {filepath} .
:quit :q To quit the current window.
:quit! :q! To quit the current window without saving!.

To quit Vim, you need to quit all windows. We’ll see more about windows in rank III.

You can see thatmost Ex commands have both long names (like :write) and short names (like
:w). They do the same things; the long version is easier to understand, but the short version is
faster to type.

A last important Ex command, maybe the most important of all:

Ex command Short name Description

:help {subject} :h {subject} Open Vim’s help about {subject} .

For example, if you want to knowmore about the NORMALmode command i , you can run the
Ex command :help i . It will open a new window with the information you seek.

Do you already have a best friend? Ditch her. Vim help is your new best friend from now on.
It’s you’re go to if you need any kind of information about anything Vim, really. If you don’t
remember how to quit Vim for example, you can run the Ex command :help quit .

I’ll often reference Vim help in this book, at the end of most sections. It will allow you to dig
deeper into the functionalities we’ll cover.

For example:

HelpYourself

:help vim-modes

:help write-quit

:help cmdline-completion

Don’t worry if you don’t really understand Vim help at first, or if there is toomuch information.
The more you’ll get comfortable with Vim, the more it will make sense.

Here’s an important tip when using the COMMAND-LINE mode: you can use the <tab> key to
complete Ex commands. For example, if you type :wr in COMMAND-LINE mode followed by

23

https://stackoverflow.blog/2017/05/23/stack-overflow-helping-one-million-developers-exit-vim/
https://stackoverflow.blog/2017/05/23/stack-overflow-helping-one-million-developers-exit-vim/

<tab> , Vimwill complete the Ex command :write for you. It’s useful when you don’t remem-
ber the exact Ex command, or to discover new ones.

Also, you can use the keystroke CTRL-d to display the possible completions.

Similarly to a shell (like Bash or Zsh), you can also use the arrow keys <up> and <down> to go
through your Ex command history.

It’s Playtime!

ExerciseA-Vim, aModal Editor

Open Vim in your terminal. You should go through the steps below one after the
other, keeping the changes you’ve made at each step.

1. Insert the text Hello Vim Land , and come back to NORMAL mode.
2. Insert a bang ! after the word Land , and come back to NORMAL mode.
3. Search in Vim help for “vim-modes”.
4. Quit Vim without saving.

MovingAroundwithMotions (NORMALmode)
Let’s now see how we can move our cursor horizontally or vertically, thanks to NORMAL mode
keystrokes called motions.

Don’t worry if you don’t remember every single NORMALmode keystroke you’ll see in this first
rank. You can always come back to it and experiment with the ones you forgot.

Ditching theArrowKeys
We’re now at themost difficult part in our journey to learn Vim. At least it was themost difficult
part for me: ditching the arrow keys to move the cursor around.

As we saw already, our fingers should stay on the row keys of the keyboard while using Vim, for
two reasons:

1. For our typing speed and accuracy to improve.
2. Because the Vim’s keystrokes you can use in NORMAL mode are more easily accessible if

your hands stay on the home row.

Your hands shouldn’t move too much; only your fingers should. If you look at your arrow keys,
you’ll see that they’re far away from the row keys, forcing you to move your right hand each
time you want to use them. That’s why, instead of using the arrow keys, many Vim users use
the h , j , k and l keys instead, to move respectively left, down, up and right.

I would strongly encourage you to use these keys, too. They’ll improve your Vim experience
significantly.

Why hjkl , and not some other keys close to the home row? For historical reasons. Vim is the
successor of the text editor Vi, which was used on physical terminals. When you look at the

24

keyboard of some of them (like the Lear Siegler ADM 3A terminal for example), you’ll see that
the arrow keys are the hjkl keys.

Likemanyother habitswhich seem ingrained in our brain, itwill be difficult not to use the arrow
keys at first. Your hand will come back to them over and over, even if you try not to. You need to
accept this fact and be patient; you’ll get there, and faster than you think.

For an easier transition, let’s try to answer an important question: how to remember what h ,
j , k and l do in NORMAL mode? Here are some useful mnemonics:

1. The h key is on the left of the sequence hjkl , and l is on the right. As a result, hitting
h will move your cursor to the left, and l to the right.

2. The j keymoves your cursor down. Here are 3 mnemonics you can try to remember:
• On your keyboard, the j key has a little bump at the bottom; so j moves the cursor
down.

• With some imagination, the letter “j” looks a bit like “↓”.
• Let’s speak typography: the letter “j” has a descender, meaning that part of the letter
descends from its baseline. As a result, j “descends” your cursor.

3. The k key is the only one left, so it has to go up. To come back to the secret art of typogra-
phy, the letter “k” has an ascender,meaning that part of the letter ascend from its baseline.
So k “ascends” our cursor.

Practice will get you there. I’ve got you covered for this one, with a revolutionary AAA game
everybody will speak about in twenty years. To play it, you have to use hjkl . If you prefer
puzzle games, try this wonderful sokoban.

HorizontalMotions
The keys h and l are not the only ones you can use to move horizontally, on the current line.
Actually, long time Vim users rarely use them. Instead, we can use other motions in NORMAL
mode to move faster.

Here are the most useful of these motions:

Keystroke Description

w Move forward to the beginning of the next word.
W Move forward to the beginning of the next WORD
e Move forward to the end of the next word.
E Move forward to the end of the next WORD.
b Move backward to the beginning of the word.
B Move backward to the beginning of the WORD.
ge Move backward to the end of the previous word.

A question arise: what’s the difference between a “word” and a “WORD”? They represent two
different motions. A “WORD” follows the usual concept of a word; a string of characters de-
limited by spaces. You can think of a “word” as a keyword, containing only a specific set of
characters. Mainly, a “word” doesn’t include some special characters.

For example, you can open the file “functions.lua” from the book companion, and place your
cursor at the beginning of the following line:

25

https://vintagecomputer.ca/lear-siegler-adm-3a-terminal/
https://themouseless.dev/snake/
https://themouseless.dev/snake/
https://themouseless.dev/sokoban/
https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

local function restorePosition() {

Now, try to use the motions w and W to see the difference. The “WORD” motion will skip the
parenthesis, but the “word”motion won’t.

There are evenmore horizontal motions I find particularly useful:

Keystroke Description

f{character} To find a {character} after your cursor.
F{character} To find a {character} before your cursor.
t{character} Move till a {character} after your cursor.
T{character} Move till a {character} before your cursor.

After using one of the four keystrokes above, you can continue to move from character to char-
acter with:

Keystroke Description

; Move forward.
, Move backward

HelpYourself

:help cursor-motions

:help left-right-motions

Beginning,Middle, andEndof Line
If you want to go to the beginning or the end of the current line, moving word by word can get
boring quickly. Here are somemore NORMAL mode keystrokes which will help you:

Motion Description

0 Tomove to the first character of the current line.
$ Tomove to the last character of the current line.
^ Tomove to the first non-whitespace character of the current line.
gM To go to the middle of the current line.

In Vim, a whitespace can be a <space> or a <tab> .

26

It’s Playtime!

ExerciseB -HorizontalMotions

Open the file “functions.lua” from the book companion. Using the hjkl keys in
NORMAL mode, move your cursor to the following position:

#/usr/bin/env lua

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <=
vim.fn.line("$") then↪

vim.cmd([[normal! g`"]])
end

end

You should go through the steps below one after the other, keeping the changes
you’ve made at each step.

1. Move to the first f of function using one key.
2. Move back to the first r of restorePosition() using one key.
3. Move to the end of the line using one key.
4. Move to the beginning of the line using one key.
5. Move to the first s of restorePosition using two keys.

VerticalMotions
Moving our cursor on the same line is great. But, at one point, we’ll have to go up and down too.
Here are somemore NORMAL mode keystrokes to move our cursor vertically:

Motion Description

{line_number}G Move at the beginning of the {line_number} .
1G or GG Move to the first line.
G Move to the last line.
CTRL-u Move upward half a screen.
CTRL-d Move downward half a screen.
CTRL-b Move backward (upward) an entire screen.
CTRL-f Move forward (downward) an entire screen.

For example, the keystroke 10G will move your cursor on line 10.

You can also use the COMMAND-LINE mode to move to a specific line number, with
:{line-number} . For example, :10 will move your cursor to line 10.

Finally, here are threemore keystrokes allowing you tomove to the top,middle, or to the bottom
of the current window:

27

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

Motion Description

H Move to the first line (the highest line) of the screen.
M Move to the line at the middle of the screen.
L Move to the last line of the screen.

HelpYourself

:help up-down-motions

It’s Playtime!

Exercise C -VerticalMotions

Open the file “functions.lua” from the book companion. Using the hjkl keys in
NORMAL mode, move your cursor to the following position:

#!/usr/bin/env lua

You should go through the steps below one after the other, keeping the changes
you’ve made at each step.

1. Move to the 5th line of the file.
2. Move back to the very beginning of the file.
3. Move to the very end of the file.
4. Move to the middle of the screen.

UndoandRedo (NORMALmode)
Personally, I would be in great difficulty if I didn’t have any way to undo or redo my editing.
Fortunately, there are some NORMAL mode keystrokes we can use to come back in time:

Keystroke Description

u To undo the last edit.
CTRL-r To redo the last undo.

You can think of CTRL-r as you being in control (CTRL) of your text. It’s not the perfect
mnemonic, but it was good enough for me.

You’ll notice that switching to INSERT mode, writing some text, and coming back to NORMAL
mode is only one undo node. It means that everything you’ve inserted can be erased with one

28

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

hit on u after coming back to NORMAL mode.

In Vim, the undo mechanism is way more powerful than in most other text editors. We’ll learn
more about it in rank XI.

HelpYourself

:help undo-redo

Operators,Motions, andText-Objects (NORMALMode)
Some NORMAL mode keystrokes can be seen as notes. We can compose a melody from these
keystrokes,mainly to edit our text. We can also see these keystrokes as verbs or nouns, creating
a tiny Vim language.

My unwanted opinion: it’s nothing less than brilliant.

TheOperators
We’ve seen how tomove our cursor in Vimwithmotions. But learning to walk is only the begin-
ning; now, it’s time to do something in NORMAL mode. To operate on our text.

The operators are the verbs of our Vim language. Here are the most useful ones:

Operator Description

d To delete some text.
c To change some text.
y To yank (copy) some text.

To be evenmore specific, when you ask Vim to “change” some text, it simply deletes it and then
switch automatically to INSERTmode. You can then type your changes.

If you try to hit d , c , or y inNORMALmode, nothingwill happen. You always need to combine
operators with something else; with themselves, for example:

Keystroke Description

dd To delete the current line.
cc To change the current line.
yy To yank the current line.

That’s not all: you can also combine operators with motions.

Operators andMotions
Here are examples of operators combined with some motions we’ve seen above. You can hit
these keystrokes in NORMAL mode:

29

Example Description

d$ To delete the text from your cursor to the end of line.
Equivalent to the alias D .

c$ To change the text from your cursor to the end of line.
Equivalent to the alias C .

y$ To yank the text from your cursor to the end of line.
Equivalent to the alias Y (only in Neovim by default).

cw To change from your cursor to the end of the word.
yG To yank (copy) from your cursor to the end of the file.

Remember that “yank” is a synonym of “copy” in Vim. We’ll “yank” a lot in this book, and
Vim help also uses this word a lot. Soon, you’ll also use it with your family and your friends,
potentially losing them in the process.

These operators (especially the yank operator) can be evenmore useful when you know the fol-
lowing NORMAL mode keystrokes:

Keystroke Description

p To put (paste) the last yanked or deleted text
after the character under your cursor.
If you yank or delete an entire line, p will put it after the current line.

P To put (paste) the last yanked or deleted text
before the character under your cursor.
If you yank or delete an entire line, P will put it before the current line.

I encourage you, in Vim, to combine operators, motions, and text-objects, as well as trying to
understand how the put keystroke behave. Again, the more practice you’ll have, the more pro-
ficient you’ll get!

HelpYourself

:help operator

:help objet-motions

Operators andText-Objects
Instead of motions, we can also use another construct with our operators: the famous Vim text-
objects. If the operators are the verbs of the Vim language, the text-objects can be seen as nouns.

When you use a motion with an operator, you’ll operate on the text from your cursor position
until the end of the motion. A text-object is a set of characters with a specific, determined start
and end, and the start is not necessarily your cursor position.

In Vim, “a word” is a text-object, as well as “a sentence”, or “a paragraph”. Let’s look at some
examples of operators combined with text-objects:

30

Example Description

diw To delete inside the word.
It deletes the current word under the cursor.

daw To delete around the word.
It deletes the current word under the cursor, as well as
the whitespace following it.

ciw To change inside the word.
It deletes the current word under the cursor and switch to INSERTmode.

dip To delete inside the paragraph.

Note that each of these examples are composed of an operator and a text-object. For example,
for the first example, d is the operator, iw is a text-object.

In Vimhelp, daw is described as delete aword. I find this “translation”quite confusing, because
it doesn’t only delete the word, but also the following space; that’s why I use around instead of a.

In general, text-objects beginning with a “a” (like aw) often delete something more than the
“object” itself.

There are evenmore text-objects available in Vim for your editing needs.

HelpYourself

:help text-objects

31

It’s Playtime!

ExerciseD-Operators andText-Objects

Open the file “functions.lua” from the book companion. Using the hjkl keys in
NORMAL mode, move your cursor to the following position:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <=
vim.fn.line("$") then↪

vim.cmd([[normal! g`"]])
end

end

You should go through the steps below one after the other, keeping the changes
you’ve made at each step.

1. Delete the word local in one operation, keeping the space after it.
2. Undo what you just did.
3. Delete the word local in one operation, including the space following it.
4. Delete the word function , and directly switch to INSERTmode, in one oper-

ation. Then, come back to NORMAL mode.
5. Undo all your changes.

6. Move to the a of the word local using two keys, and hit dw . What’s the

difference between dw and diw ?

BendingVim toYourWill (Customization)
InVim,many functionalities are configurable; youcanshapeyoureditor according toyourmega-
lomaniac desires. Let’s begin here with the basics.

You can find the final configuration we’ll write in this section in the book companion. You can
use both Vimscript and Lua implementation as references.

TheMainConfiguration File: the vimrc
Your main configuration file can be in the following path, depending on what editor you use:

Editor File Config language

Vim ~/.vim/vimrc Vimscript
Neovim $XDG_CONFIG_HOME/nvim/init.vim Vimscript
Neovim $XDG_CONFIG_HOME/nvim/init.lua Lua

When Vim starts, it reads the configuration file vimrc (or init.vim , or init.lua), and each
line is executed. I’ll call this configuration file the “vimrc” throughout the book.

32

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua
https://github.com/Phantas0s/learning_to_play_vim_companion/tree/master/rank_i

Asyoucansee, thepathofNeovim’svimrcdependson theenvironmentvariable $XDG_CONFIG_HOME .
It’s most likely /home/user/.config , depending on your operating system. If you don’t know
what are the XDG user directories, here’s a good resource to learn more about them.

If you use Neovim, you can also write your configuration in Lua (instead of Vimscript) using the
file init.lua . You can’t use both init.vim and init.lua ; you need to make a choice.

Personally, I use Neovim, and I also like to use Vimscript as much as possible (it’s less verbose
than Lua in many cases), only using Lua for more complex pieces of configuration. As a result,
I write my configuration in Vimscript using init.vim , and I load directly from there some Lua
files when I feel that using Lua is necessary.

We’ll dive more into these ideas in rank II. Whatever the vimrc you decide to use in Neovim
(init.vim or init.lua), just remember that you don’t have to configure everything in one
language; you can use both Vimscript and Lua.

HelpYourself

:help vimrc

First Configuration
Let’s nowwrite our first lines of configuration. I would encourage you to write them using Vim.
Even if you’re a total beginner, what we’ve seen in this first chapter should be enough for you to
put your toes into Vim’s relaxing waters.

To open this file, you can run vim {path} in your terminal. For example: vim ~/.vim/vimrc

(or nvim $XDG_CONFIG_HOME/nvim/init.vim if you use Neovim).

First, let’s add the following Vimscript to our config:

" Disable the arrow keys (use hjkl instead, respectively)
nmap <left> <nop>
nmap <down> <nop>
nmap <up> <nop>
nmap <right> <nop>

Don’t forget to run the Ex command :w in COMMAND-LINEmode to save your changes.

In Vimscript, any line following a double quote " is a comment. It means that Vim will never
try to execute the line. We can use comments to add some explanations to our configuration.

The Ex command nmap allows us to create amapping. We’ll look at it more in details in rank III.
Here, wemap the arrow keys to… nothing, to use the row keys hjkl instead.

If youwant towrite your config in the vimrc init.lua for Neovim, here’s the equivalent in Lua:

33

https://wiki.archlinux.org/title/XDG_user_directories

-- Disable the arrow keys (use hjkl instead, respectively)
vim.keymap.set('n', '<left>', '<nop>')
vim.keymap.set('n', '<down>', '<nop>')
vim.keymap.set('n', '<up>', '<nop>')
vim.keymap.set('n', '<right>', '<nop>')

To experience your new configuration, you can relaunch Vim and try to use your arrow keys;
they shouldn’t work anymore. Great! Out of some constraints can come great creativity.

ClipboardManagement
Copy-pasting text from another application to Vim and vice-versa is a simple operation begin-
ners often take for granted. But it comes with surprising difficulties, especially if you use Vim
(instead of Neovim).

TheClipboard Functionality

If you’re using Neovim, you can skip this subsection.

First, let’s try to run the following in the terminal:

vim --version

You’ll see something like that (among other information):

+channel +ipv6 +persistent_undo
+cindent +job +popupwin
-clientserver +jumplist +postscript
-clipboard +keymap +printer

Any feature prefixed with a plus + is compiled with your version of Vim, and anything with a
minus - is not. As you can see in the example above, my Vim has not the clipboard feature,
meaning that Vim won’t be able to store information in my operating system’s clipboard, or
retrieve some information from it. That’s a bummer.

If you’re using Vim,make sure that you have the clipboard feature. You can look at your pack-
age manager to see how you can install Vim with it. For example, in Arch Linux, you’ll have
to install the package gvim , which also install Vim for the shell, compiled with the clipboard
feature.

Using yourOperating System’s Clipboard

Let’s add another line to our vimrc:

" Can copy-paste more easily from and to Vim
set clipboard+=unnamedplus

In Lua:

34

-- Can copy-paste more easily from and to Vim
vim.opt.clipboard:append({'unnamedplus'})

It will make the copy-paste mechanism less confusing. We’ll look at this more in details when
we’ll look at registers in rank IV.

HelpYourself

:help clipboard

ImprovingVim’sDefaults
WenowhaveEx commands in our vimrc. That’s right: you could also run each linewe’vewritten
in COMMAND-LINEmode. For example:

:nmap <up> <nop>

If you use Neovim and you want to run some Lua directly from COMMAND-LINEmode, you can
use the Ex command :lua before your Lua snippet as follows:

:lua vim.keymap.set('n', '<up>', '<nop>')

That said, if you only use the above Ex commands directly in Vimwithout writing them in your
vimrc, these newmappings would disappear when you close Vim. That’s why we write them in
a vimrc; because we want these Ex commands to be executed each time we open Vim.

If you use Vim instead of Neovim, let’s add these lines to your vimrc too:

" No compatibility with Vi
set nocompatible

" Enhanced completion in command-line mode
set wildmenu

" Syntax highlighting
syntax on

" Enable filetype, indentation, plugin
filetype plugin indent on

" Always display the status bar
set laststatus=2

" Allow hidden buffers
set hidden

We basically set options to make Vim a bit more user friendly. We’ll look more closely at Vim’s

35

options in rank II. We’re also looking at the option 'hidden'more thoroughly in rank IV.

By default in Neovim, all of these options are already set as above.

Also, if you want to see the line numbers (in Vim or Neovim), you can add the following to your
vimrc:

" Display line numbers
set number

In Lua:

-- Display line numbers
vim.opt.number = true

TheConfigurationAddiction
At that point in our adventure, I’d like to warn you: configuring Vim can become addictive. Not
I-lost-my-house-and-my-partner-left-me kind of addictive, but you can easily spend many
hours trying to come up with the best configuration in the known universe.

Addwhat’suseful for you, stepbystep. Don’t try to recreate all the functionalities youhad inyour
text editor or, even worse, your IDE. You’ll get eventually there whenwe’ll speak about external
plugins a bit later in this book but, before that, you should consider trying to understand and
use the functionalities directly available in vanilla Vim.

There is a massive time sink black hole in Vim Land called The Pit of Endless Configuration™.
It goes as follows:

1. You discover how configurable Vim is.
2. You spend a crazy amount of time configuring Vim and adding more and more plugins
(instead of learning its fundamentals).

3. You don’t understand what’s happening in your growing vimrc anymore.
4. Vim begins to behave weirdly and, since you don’t understand your own vimrc, you don’t

really knowwhy.
5. You’re burned out. Vim is hell, and you’re back on Notepad.

Now,we all descend in the Pit of Endless Configuration at somepoint. There are somany articles
out there telling uswhat configuration towrite (without necessary explainingwhat it does), and
there is this weird appeal of trying to make Vim perfect.

Vim is a tool. What you produce with it is the most important; not its configuration. Granted, it
can be fun to configure Vim, like you would tune your instrument before playing it. But it can
get also quite overwhelming.

DebuggingYour Configuration
As we just saw, the more we add to Vim, the more we increase the chances to get some nasty
bugs; especially if we don’t really understand what we add.

If Vim becomes unstable and buggy, the first step is to try to disable what you’ve added, to un-
derstand where the problem is coming from.

36

These options can help you in that regard. They can be given to both Vim and Neovim:

Shell command Description

vim -u NONE Launch Vimwithout your vimrc.
vim --noplugin Launch Vimwithout your plugins.

If you find out that yourmisery comes fromyour vimrc, try to comment out the last additions to
pinpoint the problem. You can also try to disable the different plugins you’ve installed recently
if the problem comes from there.

We’ll lookmore thoroughly into Vim plugins in rank TODO.

37

Exercises
To solve these exercises, open the file “functions.lua” from the book companion in Vim.

Don’t forget that you can quit Vim with the Ex-command :q . Add a bang ! to the command
to quit without saving: :q! .

Exercise 1 -HorizontalMotions

Using the hjkl keys in NORMALmode,move your cursor at the beginning of the following line:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then

vim.cmd([[normal! g`"]])
end

end

You should go through the steps one after the other, keeping the changes you’ve made at each
step. Use the most efficient keystrokes you know in NORMAL mode; the less keys you hit, the
better:

1. Move your cursor to: if vim.fn.line("'\"") > 1

2. Move your cursor to: if vim.fn.line("'\"") > 1

3. Move your cursor to: if vim.fn.line("'\"") > 1

4. Move your cursor to: if vim.fn.line("'\"") > 1

Exercise 2 -Operators,Motions, andText-Objects

Using the hjkl keys in NORMAL mode, move your cursor to the following position:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then

vim.cmd([[normal! g`"]])
end

end

You should go through the steps one after the other, keeping the changes you’ve made at each
step.

1. Move to the first opening parenthesis of the same line, using only two keys, as follows:

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then

2. Delete these parentheses and everything inside as follows:

38

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

if vim.fn.line > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then

3. Undo your previous deletion.
4. Move your cursor to the i of the first word line , using only two keys, as follows:

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then

5. Move to the i of the first vim , using only a one key, as follows:

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then

Exercise 3 -YankandPut

Using the hjkl keys in NORMAL mode, move your cursor to the following position:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then
vim.cmd([[normal! g`"]])

end
end

You should go through the steps one after the other, keeping the changes you’ve made at each
step.

1. Hit a single key inNORMALmode tomove to the end of the line and switch to INSERTmode.
Come back to NORMAL mode afterward.

2. Yank the whole line.
3. Put the line you’ve yanked above the current one, using a NORMAL mode keystroke.

Beyond theRank
These exercises are more difficult. The solutions will often involve some complementary con-
cepts not seen in this rank.

Exercise4-Yank,Delete, andPut

Using the hjkl keys in NORMAL mode, move your cursor to the following position:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then
vim.cmd([[normal! g`"]])

end
end

You should go through the steps one after the other, keeping the changes you’ve made at each
step.

39

1. Yank the whole line.
2. Move to the first line of the file using two keys.
3. Delete the whole line.
4. Put the line you’ve deleted above the current one.
5. Put the line you’ve yanked below the current one.
6. Put the line you’ve deleted above the current one, using an Ex command instead of a NOR-

MAL mode keystroke.

Exercise 5 -MoreText-Objects

Using the hjkl keys in NORMAL mode, move your cursor at the beginning of the function “re-
storePosition” as follows:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then
vim.cmd([[normal! g`"]])

end
end

For each step below, undo all your changes and come back to this initial cursor position.

1. Delete thewhole function restorePosition (spreading on5 lines), aswell as all the empty
lines after it, only using three keys.

2. Delete the next block of parenthesis, only using three letter keys.
3. Delete a sentence.
4. To find the start and end of the text-object representing a sentence, what Ex-command

would you use?
5. What text-object could be useful to edit some HTML? Do you think this text-object exists
in vanilla Vim?

Exercise6-MoreOperations

Using the hjkl keys in NORMAL mode, move your cursor at the following position:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then
vim.cmd([[normal! g`"]])

end
end

For each step below, undo all your changes and come back to this initial cursor position.

1. Delete the letter r , only using two keys, as follows:

local function estorePosition()

2. Delete the space before your cursor, only using two keys, as follows:

40

local functionrestorePosition()

3. What are the keystrokes of the two previous questions: operators combined with motions,
or operators combined with text-objects?

4. We used two keys for each solution of question 1 and 2. Find an equivalent keystroke for
each, only using one key this time.

5. What are the differences between the text-objects “ap” and “ip”?

Exercise 7 -UpandDownFollowing Indentations

Using the hjkl keys in NORMALmode, move your cursor on the character l , at the beginning
of the word local :

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then
vim.cmd([[normal! g`"]])

end
end

You should go through the steps one after the other, keeping the changes you’ve made at each
step.

1. Move to the next line, on the i of if , only using one key.
2. Move back to the starting position, only using one key.

41

Exercises - Solutions
Other solutions than the one presented here are possible.

ExerciseA-Vim, aModal Editor

Question Keystroke Result

start

1 iHello Vim Land<esc> Hello Vim Land

2 a!<esc> Hello Vim Land!

3. You need to run the Ex command :help vim-modes .
First, hit : in NORMAL mode to switch to the COMMAND-LINEmode.
Then, write help vim-modes and hit <enter> .

4. You need first to run the Ex command :quit (or :q) to quit the window opened by Vim
help, and then you need to run :quit! (or :q!), to quit the last window without saving
your text. Closing all windows will also quit Vim.

ExerciseB-HorizontalMotions

Question Keystroke Result

start local function restorePosition()

1 b local function restorePosition()

2 w local function restorePosition()

3 $ local function restorePosition()

4 0 local function restorePosition()

5 fs local function restorePosition()

Exercise C -VerticalMotions

Question Keystroke Result

start local function restorePosition()

1 5G vim.cmd([[normal! g`"]])

2 GG or 1G #!/usr/bin/env lua

3 G }

4 M]]--

You can also run :5 in COMMAND-LINEmode, to move to the fifth line of the file.

42

ExerciseD-Operators andText-Objects

Question Keystroke Result

start local function restorePosition()

1 diw function restorePosition()

2 u local function restorePosition()

3 daw function restorePosition()

4 ciw<esc> restorePosition()

5 uu llocal function restorePosition()

6 fadw locfunction restorePosition()

6. The difference between dw and diw :

• w is a motion; the operation dw begins at the cursor position.
• iw is a text-objects; the operation diw begins at the start of the text-object.

That’s why dw , in this example, delete from the cursor position to the beginning of the next
word function , and diw delete inside the entire word.

Also, a text-object always need to be prefixed by an operator. Amotion can be used on its own to
move your cursor.

Exercise 1 -HorizontalMotions

Question Keystroke Result

start if vim.fn.line("'\"") > 1

1 w , or ^ if vim.fn.line("'\"") > 1

2 w if vim.fn.line("'\"") > 1

3 W or f> if vim.fn.line("'\"") > 1

4 ^ if vim.fn.line("'\"") > 1

Exercise 2 -Operators,Motions, andText-Objects

Question Keystroke Result

start if vim.fn.line("'\"") > 1

1 f(or t" if vim.fn.line("'\"") > 1

2 da(if vim.fn.line > 1

3 u if vim.fn.line("'\"") > 1

4 Fi if vim.fn.line("'\"") > 1

5 ; if vim.fn.line("'\"") > 1

43

Exercise 3 -YankandPut

Question Keystroke Result

start local function restorePosition()

1 A<esc> local function restorePosition()

2 yy local function restorePosition()

3 P local function restorePosition()

Exercise4-Yank,Delete, andPut

Question Keystroke Result

start local function restorePosition()

1 yy local function restorePosition()

2 gg or 1G #!/usr/bin/env lua

3 dd

4 P #!/usr/bin/env lua

5 "0p local function restorePosition()

6 :put! #!/usr/bin/env lua

Exercise 5 -MoreText-Objects

Question Keystroke Result

start local function restorePosition()

1 dap --[[

2 dab local function restorePosition

3 das or dis g`"]])

Note that dab here is for delete around a block. A block includes the pair of parentheses and
what’s inside.

There’s also aB and iB , both text-objects representing a block delimited with curly brackets
{} .

4. You need to run the Ex-command :help sentence (or :help text-object) in
COMMAND-LINEmode.

5. The text-objects at and it stand for “around a HTML tag” and “inside a HTML tag”,
respectively. Add an operator as a prefix to delete, change, or yank your HTMLmore easily.

Exercise6-MoreOperations

44

Keystroke Keystroke Result

start local function restorePosition()

1 dl local function estorePosition()

2 dh local functionrestorePosition()

3. We’re usingmotions here: l is themotion tomove your cursor one character to the right,
h tomove your cursor one character to the left. Also, themotion yl is occasionally useful
if you want to yank an exotic unicode character to put (paste) it somewhere else.

4. The NORMAL mode keystroke x is the equivalent of dl , and X is the equivalent of dh .
5. The text-object ap includes the blank line following the paragraph, ip doesn’t. It’s sim-
ilar to the difference between aw and iw : the first includes the following space, but the
second doesn’t.

Exercise 7 -UpandDownFollowing Indentations

Question Keystroke Result

start local function restorePosition()

1 + if vim.fn.line("'\"") > 1

2 - local function restorePosition()

45

Rank II -Novice

Welcome back, Vim explorer. We just leveled up to a new rank! How do you feel? Good? Tired?
Happy? Flabbergasted?

It’s time to add more Vim modes to our tool belt, as well as diving deeper into the concepts we
saw in the first rank. More specifically, we’ll see:

• What are the VISUAL and REPEATmodes, and how to use them.
• More useful keystrokes to switch from NORMALmode to INSERTmode.
• More keystrokes to delete some text, and the possible consequences.
• How to use efficiently your new life savior, Vim help.
• What to use for configuring Neovim: Vimscript or Lua.

Take your bag full of modes, motions, operators, text-objects, and let’s continue our adventure
in the Holy Land of Vim.

EvenMoreVimModes
Vim’s modes are like mountains: they’re quite easy to understand (it’s a big pile of rocks), but
you can always dig deeper. To continue in my weird analogy, the NORMAL mode is the Everest
of all modes: it’s the biggest of all. We’ll dig it a bit more in this section, and, in general, in the
whole book.

But first, let’s try to ascend two newmodes: the VISUAL mode, and the REPLACEMODE

TheVISUALMode
There is another important and useful mode in Vim: the VISUALmode. Its goal? Selecting some
text.

Here are the keystrokes you can use in NORMAL mode to switch to VISUAL mode:

Keystroke Description

v Switch to VISUAL mode “charwise”.
V Switch to VISUAL mode “linewise”.

When you switch to VISUAL mode (similarly to INSERT mode), you’ll see the indicator
--VISUAL-- appearing at the bottom left corner of Vim. As always, you can use the <esc> key
to come back to NORMAL mode.

46

When hitting v in NORMALmode, you enter the VISUALmode per character (“charwise”). The
selectionwill start at the cursor position; you can thenhit somemotions (or text-object) to select
one or more characters.

When you have some text selected, you can then hit an operator to operate on your selection.
Here are some examples:

Example Description

vaw Select visually around a word.
vawd Select visually around a word, delete it, and come back to NORMAL mode.

Equivalent to the NORMAL mode keystroke daw .
vw Select visually from the cursor position to the end of the current word.
v$ Select visually from the cursor position to the end of line.
vf,y Select visually from the cursor position to the first comma,

and then yank the selection.
vawyp Select visually around a word, yank it, and put (paste)

it after the current character.

If you want to select entire lines at once, you can switch to VISUAL mode per line (“linewise”)).
To do so, you need to hit V in NORMALmode, and then hit some vertical motions to add lines to
your selection.

Here are more examples:

Example Description

Vy Select the current line and yank it.
Similar to the NORMAL mode keystroke yy .

Vj Select the current line and the line below.
Vc Select the current line and change it.

Equivalent to the NORMAL mode keystroke cc .
VGd Select every line from the current one until the last,

and delete the text selected.
Vyp Select the current line, yank it, and put (paste) it below.

There is also the VISUAL mode per block (“blockwise”), but we’ll see that later in the book, in
rank VIII.

The different types of VISUAL modes are convenient because they allow us to operate upon an
arbitrary portion of text we can visually select. Also, its visual naturemake it easy to knowwhat
our operators will operate on.

That said, it’s often quicker to only use operators with motions and text-objects in NORMAL
mode (aswesaw in rank I). For example, theoperation daw is quicker to type than theequivalent
vawd , because it involves less keys.

Editing your text in Vim while using the less keystrokes possible is a challenge Vim users like
to tackle. There’s even an excellent game based on this concept: VimGolf. Editing while typing
less is often easier and faster.

47

https://www.vimgolf.com/

This idea is powerful, but here’s what you should really keep in mind: it’s better to follow a
workflow you like, you can remember easily, and which answers your specific needs, instead of
obsessing on using the less keystrokes possible. If you can’t remember (or if you don’t like) the
optimal way, go for the non-optimal route. That’s fine too.

All in all, VISUAL mode is great to understand the range of motions and text-objects, even if it’s
not always the most efficient option to edit your text.

HelpYourself

:help visual-mode

TheREPLACEMode
The last mode I’d like to highlight here is the REPLACEmode. As you might have guessed, it’s a
mode where you can replace some text. Here are the keystrokes you can hit in NORMALmode to
use it:

Keystroke Description

r Replace the character under the cursor.
R Switch to REPLACEmode.

Granted, the keystroke r doesn’t switch to REPLACEmode, but it’s thematically close.

As usual, after switching to REPLACE mode, you can come back to NORMAL mode by hitting
<esc> .

In REPLACEmode, instead of inserting new text (what you can do in INSERTmode), you can re-
place existing text. It’s especially useful when you don’t want tomess up with some formatting.

Consider the following:

Stuff Description

------------- ---------------------------------
`r` Replace the character under the cursor.
`R` Switch to replace mode.
------------- ---------------------------------

This is a table in markdown (you can find it in the book companion). If we want to change the
word Stuff under the cursor by Keystroke , we could hit caw and then type Keystroke in
INSERTmode. But the word Description would be misaligned afterward:

Keystroke Description

------------- ---------------------------------

Instead, if we hit R and type Keystroke , the word Description wouldn’t move, because we
would replace Stuff aswell as some following spaceswith our new characters:

48

https://raw.githubusercontent.com/Phantas0s/learning_to_play_vim_companion/master/rank_ii/table.md

Keystroke Description

------------- ---------------------------------

HelpYourself

:help replace-mode

MoreKeystrokes to Switch to INSERTMode
Aswe saw in rank I, using Vim requires you to switch often betweenNORMAL and INSERTmode.
That’s why there are many NORMAL mode keystrokes allowing us to switch to INSERTmode in
slightly different ways.

Here are the most interesting ones:

Keystroke Description

i To insert before the current character.
a To insert after the current character.
A To insert after the end of the current line.
o To open a new line below the current one

and switch to INSERTmode.
O To open a new line above the current one

and switch to INSERTmode.
<esc> or CTRL-c or CTRL-[Switch back to NORMAL mode.

HelpYourself

:help insert-mode

49

It’s Playtime!

ExerciseA-EvenMoreVimModes

Open the file “functions.lua” from the book companion. Using the hjkl keys in
NORMAL mode, move your cursor to the following position:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <=

vim.fn.line("$") then↪

vim.cmd([[normal! g`"]])
end

end

For each stepbelow, undo all your changes, comeback to this initial cursor position,
and switch back to NORMAL mode.

1. Replace the first vim of the current line with nop using REPLACEmode.
2. Delete the whole line using VISUAL mode.
3. Change the first v of vim with a w in NORMAL mode.
4. Open anew line belowand switch to INSERTmode, using only onekey inNOR-

MAL mode.
5. Insert a semi colon “:” at the end of the line.

Deleting InVim (NORMALmode)
We’ve already seen in rank I how to delete some text with the operators delete and change. Com-
bined with themselves, a motion, or a text-object, they’re the most useful tools to erase text
from existence.

That said, deleting in Vim can have some surprising effects when you also want to yank and put
(paste) some text.

Delete, Yank, andPut
Let’s look at an example to illustrate one of the burden Vim novices might stumble upon. Let’s
say that you’ve the following text (you guessed it, from the book companion):

local function restorePosition()

Then, let’s try the following in NORMAL mode:

1. Hit yiw to yank inside theword local . It ends up in the clipboard, to put it (paste it) later.
2. Hit the motion w to move to the f of function .
3. Hit daw to delete around the word function .
4. Hit P to put (paste) the text before the character under the cursor.

50

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua
https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

Here are the different steps:

Step Keystroke Result

1 yaw local function restorePosition()

2 w local function restorePosition()

3 daw local restorePosition()

4 P local function restorePosition()

Manywould expect to put theword local in the fourth step. Instead,weputwhatwe’vedeleted,
the word function . In fact, we’re back to our initial text.

It’s because the NORMAL mode keystroke P (or p) doesn’t only put back the last yanked text,
but also the last deleted text.

For now, you could think of this behavior as throwing whatever you delete into your clipboard,
as it was a trash bin. Itmeans that anything you delete will always be brought back if it’s the last
thing you did before hitting a put keystroke (p or P) in NORMAL mode.

This behavior will make more sense when we’ll look at Vim’s registers in rank V. From there,
we’ll have the opportunity to choose what we want to put: what we’ve yanked, what we’ve
deleted, and more. Until then, bear with me; it might be quite annoying at first, but it’s worst
the pain.

Cross theUnwantedCharacters
There are two NORMAL mode keystrokes you can use to delete single characters. Here they are:

Keystroke Description

x Delete the character under the cursor.
X Delete the character before the cursor.

Both are equivalent to the NORMAL mode keystrokes dl and dh respectively, which are the
combinations of the delete operator and the motions l (right) and h (left).

HelpYourself

:help deleting

51

It’s Playtime!

ExerciseB -Deleting inVim

Open the file “functions.lua” from the book companion. Using the hjkl keys in
NORMAL mode, move your cursor to the following position:

local function restorePosition()

if vim.fn.then
vim.cmd([[normal! g`"]])

end
end

You should go through the steps below one after the other, keeping the changes
you’ve made at each step.

1. Delete the word restore .
2. Replace the uppercase P of Position with the lowercase p .
3. Move to the n of position .
4. Put what you’ve deleted, to end up with positionrestore .
5. Delete the e of positionrestore with one key.

NavigatingVimHelp (COMMAND-LINEMode)
This book doesn’t try to explain everything you can do in Vim; instead, it tries to highlight its
most useful functionalities. In contrast, Vim help explains almost everything, making it more
complicated, more dense, but also more complete.

Vim help is your most precious ally in your adventure in Vim Land: it can answer most of your
questions. But to get the answer, you need first to learn how to ask properly.

Asking forHelp
Here are the most useful Ex commands you can use to get the information you need from Vim
help:

Ex command Short name Description

:help :h Open the main help file, including
an extensive table of content.

:help {subject} :h {subject} Open the Vim help file about {subject}

in a split window.

Also, as we saw in the preface, Vim help use specific notations to describe Ex commands
and keystrokes. If you don’t understand some of them while consulting Vim help, look at
:help notation .

52

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

HelpYourself

:help helphelp

:help helpgrep

:help notation

FollowTheDefinition
Vim help is a set of text files. Thanks to a tag file (we’ll see this concept much further in the
book, in rank XVII), you can also jump to the definitions of some specific keywords. These links
appear in a different color in Vim.

If you want to follow one of these keywords, place your cursor on the keyword of interest, and
hit CTRL-] . You’ll then jump to another part of the same help file, or even to another file. To
jump back, you can hit CTRL-o (we’ll come back to this specific keystroke in rank IV).

Let’s try it. First, run the Ex command :help . A new window will open vertically. Welcome to
the main help file!

Then, place your cursor on bars , as follow:

Close this window: Use ":q<Enter>".
Get out of Vim: Use ":qa!<Enter>" (careful, all changes are lost!).

Jump to a subject: Position the cursor on a tag (e.g. bars) and hit CTRL-].

With the mouse: Double-click the left mouse button on a tag, e.g. |bars|.
Jump back: Type CTRL-O. Repeat to go further back.

Finally, hit CTRL-] . You’ll jump to the definition of bars , at the end of the same file. To come
back to where you were, hit CTRL-o .

To summarize:

Keystroke Description

CTRL-] Jump to the definition of the keyword under the cursor.
CTRL-o Jump back to your older cursor position.

To close Vim help, you can run the Ex command :q in COMMAND-LINEmode.

What about displaying the table of content of the current help file, tomake your navigation even
easier? Here’s the NORMAL mode keystroke you’ll need:

Keystroke Description

gO Open a new window with the table of content (TOC)
of the current help file.
If the TOC is already open, move your cursor inside.

53

You can then jump to any section by moving your cursor on it and hit <enter> . You can close
the table of content with the Ex command :q .

HelpYourself

:help CTRL-]

:help CTRL-O

FindingWhat YourHeartDesire
We’ve seen just above that you can search through Vim help using :help {subject} . But what
should be this {subject} ? It’s sometimes difficult to come up with a good one in order to get
the information you seek.

Thankfully, you can follow a set of rules depending on what you’re searching. Here are some
examples of general patterns you can use:

Ex command Description

:help {a-specific-topic} Search for {a-specific-topic} .
A specific entry in Vim’s help is often composed of
a couple of words separated with dashes - .

:help {keystroke} Search for a NORMAL mode {keystroke} .
:help CTRL-{character} Search for a NORMAL mode

keystroke CTRL-{character} .
:help i_CTRL-{character} Search for an INSERTmode

keystroke CTRL-{character} .
:help c_CTRL-{character} Search for a COMMAND-LINEmode

keystroke CTRL-{character} .
:help -{option} Search for an {option} you can give to the

vim (or nvim) shell command.

To drive the point home, here are more concrete examples:

Example Description

:help insert-mode Search for the topic insert-mode .
:help o Search for the keystroke o in NORMAL mode.
:help daw Search for the keystroke daw in NORMAL mode.
:help CTRL-o Search for the keystroke CTRL-o in NORMAL mode.
:help i_CTRL-o Search for the keystroke CTRL-o in INSERTmode.
:help c_CTRL-f Search for the keystroke CTRL-o in COMMAND-LINEmode.
:help CTRL-r_CTRL-r Search for the keystroke CTRL-r followed by CTRL-r .
:help -u Search for the option -u you can give to vim (or nvim)

shell command.

54

There are more patterns you can use with :help , to specify what you’re actually searching.
We’ll discover them throughout the book.

It’s Playtime!

Exercise C -UsingVimHelp

Consider the following from Vim help:

:[range]m[ove] {address}

1. What part of the above Ex command is mandatory? What part is optional?
2. What Ex command would you use to find the above entry in Vim help?
3. What Ex command would you use to find the NORMAL mode keystroke

CTRL-v in Vim help?
4. What Ex commandwould you use to find the INSERTmode keystroke CTRL-v

in Vim help?
5. What Ex command would you use to find the COMMAND-LINE mode
keystroke CTRL-v in Vim help?

Configuring (Neo)Vim: What Language touse? (Customization)
Once upon a time, Vimscript was created to configure Vim. It’s straightforward to use for this
limited job; Vimscript has useful Ex commands to customize Vim as you see fit.

But, over the years, Vimscript mutated: it became a more general scripting language. It’s also
where things begin to get ugly: Vimscript has many pitfalls and weird design decisions. For
anythingmore than simple Vim configuration, it can be painful to understand, use, and debug.

It’s where the developers of Neovim come into the picture. They basically took Vim’s source
code to make their own editor. One of the goal was to propose another language than Vimscript
to configure everything, and they agreed on using Lua.

As a result, if you decide to use Neovim, you can write your configuration in Vimscript, Lua, or
a mix of both.

Following Neovim’s evolution, Vim also decided to propose a new and better language for its
configuration: Vim9 Script, available from Vim version 9 on.

Don’t be confused: what’s called commonly Vimscript in this book (and all over the Internet) is
not Vim9 Script. In fact, I won’t speak about Vim9 Script at all in this book. Simply be aware
that you can write your vimrc in Vim9 Script in Vim if you want to (but not in Neovim).

Actually, most of the configuration in this book will be in Vimscript. I’ll try to provide the Lua
version also, but only as a second step. In my opinion, Lua is especially useful when the config-
uration becomes more complex.

Why not configuring everything in Lua at the first place? For different reasons:

55

https://www.vim.org/vim90.php

1. Many good resources and useful functions available on the glorious Internet are written in
Vimscript. Understanding the basics of this language will help you understand and cus-
tomize what you’ll find online.

2. Vimscript will continue to be supported by both Vim and Neovim.
3. At the time of writing, some Vimscript functions don’t have any equivalence in Lua. You’ll
have to use Vimscript in these cases.

4. Basic Vimscript is still used when crafting Ex commands in COMMAND-LINEmode.
5. I want this book to be useful for Vim users too, not only Neovim users.

If you use Neovim, remember that you can call some Vimscript in Lua, and vice-versa.

If you want most of your Neovim configuration in Lua, use the file init.lua as your vimrc. If
you wantmost of your configuration in Vimscript (what I personally do), use init.vim as your
vimrc.

HelpYourself

:help vimscript

:help lua-guide (only for Neovim)

56

Exercises
Exercise 1 -VisualMode

Open thefile “functions.lua” from the book companion. Using the hjkl keys inNORMALmode,
move your cursor to the following position:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then

vim.cmd([[normal! g`"]])
end

end

Cancel your selection by hitting <esc> after each step.

1. Select the word under the cursor (without its following <space>).
2. Select everything until theword and on the same line (without including it), and yank the

text selected.
3. Find a shorter NORMAL mode keystroke to do the same yank than the previous question.
4. Select everything inside the next parentheses on the same line.
5. Select the entire line and the line below.
6. Select the entire function in [visual] mode.

Exercise 2 -Help Yourself!

Using Vim help, how would you:

1. Find information about the REPLACEmode?
2. Find information about the keystroke * in NORMAL mode?
3. Find information about the quickfix list?
4. Find information about the Ex command “save”?

Beyond theRank
These exercises are more difficult. The solutions will often involve some complementary con-
cepts not seen in this rank.

Exercise 3 -MoreVisualMode

Open thefile “functions.lua” from the book companion. Using the hjkl keys inNORMALmode,
move your cursor to the following position:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then

vim.cmd([[normal! g`"]])
end

end

Cancel your selection by hitting <esc> after each step.

57

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua
https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

1. Select the current line and the next two lines only hitting a keystroke of two keys.
2. Select and save the current line to the filepath “/tmp/file”.
3. Select the whole function, and indent your selection two times
4. Select everything from your cursor position until the first occurrence of the word normal

on the line below.

Exercise4-MoreHelp, Please

Using Vim help, how would you:

1. Find information about the option 'filetype'?
2. Find information about the keystroke CTRL-r CTRL-r in COMMAND-LINEmode?
3. Find information about the <esc> keystroke in INSERTmode?
4. Find information about the Vimscript function expand ?
5. Find information about the error message E492: Not an editor command: abcde ?

Exercise 5 - Swapping

Open thefile “functions.lua” from the book companion. Using the hjkl keys inNORMALmode,
move your cursor to the following position:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then
vim.cmd([[normal! g`"]])

end
end

For each step below, undo all your changes and come back to this initial cursor position. Use
NORMAL mode for each step.

1. Swap the character l with the following character o , only using two keys.
2. Swap the current line you’re on, with the line just below, only using three keys.
3. Swap the word local with the word function , only using five keys.
4. Swap the entire function restorePosition with deleteTrailingWS only using five keys.

58

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

Exercises - Solutions
Other solutions than the ones presented here are possible.

ExerciseA-EvenMoreVimModes

Question Keystroke Result

start if vim.fn.line("'\"")

1 Rnop if nop.fn.line("'\"")

2 Vd vim.cmd([[normal! g`"]])

3 rw if wim.fn.line("'\"")

4 o |

5 A: <= vim.fn.line("$") then:

ExerciseB-Deleting inVim

Question Keystroke Result

start local function restorePosition()

1 dtP local function Position()

2 rp local function position()

3 e local function position()

4 p local function positionrestore()

5 x local function positionrestor()

Exercise C -UsingVimHelp

1. [range] and [ove] are optional; : , m and {address} are mandatory. For example, all
following Ex commands are valid:

:move 2
:m 2
:3mo 2
:mov 2

2. :help :move

3. :help ctrl-v

4. :help i_ctrl-v

5. :help c_ctrl-v

Exercise 1 -VisualMode

1. Hit viw in NORMALmode. The keystroke vaw selects the following space, and vw selects
until the first letter of the next word.

59

2. Hit vtay in NORMAL mode.
• v switches to VISUAL mode.
• ta selects everything till the next a on the current line.
• y yanks the selection.

3. Instead of hitting vtay , it’s easier (and faster) to hit yta in NORMAL mode.
4. Hit vi(or vib (b is for block). If your cursor is not on (or in) parentheses, it will operate

on the next ones on the current line.
5. Hit Vj in NORMAL mode.

• V switches to VISUAL mode linewise.
• j move your cursor to the next line, extending the selection in the process.

6. Hit vip in NORMAL mode to select a whole paragraph.

Exercise 2 -Help Yourself

To find information in Vim help, use the Ex command :help .

1. :help replace-mode

2. :help *

3. :help quickfix - unfortunately, :help quickfix-list doesn’t work.
4. :help :save - don’t forget the colon : if you specifically search for an Ex command.

BeyondTheBasics Solutions
Exercise 3 -MoreVisualMode

1. You can use a count (see rank III): hitting 3V in NORMALmode will select the current line
as well as twomore lines below.

2. Follow these steps:
• Hit V to select the current line.
• Hit : to switch to COMMAND-LINEmode.
• You’ll see '<,'> appearing in your command-line. Write write /tmp/file after-
ward, followed by <enter> .

• You can run :edit /tmp/file to create a new buffer (see rank IV) linked to this file.
3. You can select the whole option by hitting vip in NORMAL mode. You can then indent it
using the VISUAL mode keystroke > . Here are the different ways you can indent it two
times:

• Hit > , and then repeat the last action with . (see rank TODO).
• Use a count: hit 2> (see rank TODO.

4. You can hit v/normal . The search /normal acts here as a motion.

Exercise4-MoreHelp, Please

1. :help 'filetype' - don’t forget the single quotes ' to specifically
2. :help c_CTRL-r_CTRL-r - it means hitting CTRL-r followed by CTRL-r in COMMAND-

LINEmode
3. :help i_<esc> .
4. :help expand()

5. :help E492 - not all Vimmessages have a clear description in Vim help however.

60

Exercise 5 - Swapping

Question Keystroke Result

start local function restorePosition()

1 xp olcal function restorePosition()

2 ddp local function restorePosition()

3 dwelp or dwf<space>p function local restorePosition()

4 dap}p local function restorePosition()

61

Rank III - Beginner

If you think I’m exaggerating by saying that you’ll be able towritewithout even knowing it after
this rank, you’re right. Actually, you’ll soon realize that I’m exaggerating in the whole book.

It’s time to add more concepts to your Vim Grimoire, to cast even more powerful spells in Vim
Land. More specifically, we’ll see in this rank:

• How to search some text in the current file.
• How to repeat NORMAL mode keystrokes by adding a count as prefix.
• What are Vimmessages, and how to display its history.
• What are Vim options, and how to change their values.

This arcane knowledge is forever useful in Vim Land. Let’s take our wizard hat without waiting,
you crazy sorceress.

Searching in a File
There are two ways to search in your current file: using the COMMAND-LINE mode, or using
some handy keystrokes in NORMAL mode.

VimSearch in COMMAND-LINEMode
As we saw in rank I, we can hit the keystroke : in NORMAL mode to switch to COMMAND-
LINE mode and run Ex commands. We can also search throughout the file currently open in
COMMAND-LINEmode thanks to these keystrokes:

Command Description

/{pattern} Switch to command-linemode,
and Search forward for {pattern} from the cursor position.

?{pattern} Switch to command-linemode,
and search backward for {pattern} from the cursor position.

The {pattern} can be a regular expression (see rank IX). It means that regex metacharacters
(like . for example) need to be escaped (\. for example) to match the literal characters.

When you hit <enter> after typing your {pattern} , you’ll switch back to NORMALmode, and
you’ll move directly to the first match. If there’s no match, Vim will simply display an error
Pattern not found .

62

If there aremore than onematch, you canmove from the current one to the next by using these
NORMAL mode keystrokes:

Keystroke Description

n Repeat the last search forward (move to the next match).
N Repeat the last search backward.

Let’s look at an example in our favorite file “functions.lua” from the book companion:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then
vim.cmd([[normal! g`"]])

end
end

If you hit / in NORMAL mode, you’ll switch to COMMAND-LINE mode; your cursor will end up
at the bottom of Vim. From there, you can type the pattern you want to search. For example,
you can type /vim . Then, hitting <enter> will move your cursor to the first match “vim” and
switch back to NORMAL mode.

You can thenhit n to go frommatch tomatch. For example, hitting n two timeswillmove your
cursor on the last vim of the current line:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then

vim.cmd([[normal! g`"]])
end

end

That’s not all: searching can be a motion. It means that you can combine an operator with a
search. As for anymotion, the operator will operate from the cursor position to the first match.

For example, let’s come back to this cursor position in our file:

local function restorePosition()

If you hit d/ition<enter> in NORMAL mode, you’ll delete everything from the cursor position
to the first match. The result:

local Position()

You can also search for regular expressions, not only for plain text. We’ll look at Vim regular
expressions in rank XI.

Searching theWordUnder theCursor
We can also search directly for the word under the cursor using NORMAL mode keystrokes:

63

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

Keystroke Description

* Search forward for the word under the cursor.
g* Search forward for the substring under the cursor.
Search backward for the word under the cursor.
g# Search backward for the substring under the cursor.

Let’s look a this example:

vim or neovim, that is the question: whether 'tis nobler in the mind to vim

the slings and arrows of neovim fortune, or to take away the uppercase
against a sea or characters

↪

↪

This gibberish is also available in the book companion (what a gift), for you to try out the differ-
ent keystrokes here. If you hit * multiple times, you’ll only go through all the vim words. But
if you use g* , you’ll also match the substring vim of neovim .

You can also hit the normal mode keystrokes n and N after any keystroke described above, to
move from onematch to another.

HelpYourself

:help search-commands

64

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/rank_ii/gibberish.md

It’s Playtime!

ExerciseA-VimSearch

Using the hjkl keys in NORMAL mode, move your cursor at the beginning of
restorePosition :

#!/usr/bin/env lua

local function restorePosition()
if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <=

vim.fn.line("$") then↪

vim.cmd([[normal! g`"]])
end

end

You should go through the steps below one after the other, keeping the changes
you’ve made at each step. Use Vim search for each question.

1. Search for the word vim andmove your cursor to the first match.
2. Move to the next match.
3. Move back to the first match.
4. Move up using the motion k , then move to the next match of the word

function under the cursor.

Count: RepeatingKeystrokes (NORMALmode)
Throughout this book, we’ll see that Vim is the champion for automating mundane, annoying
editing tasksweneed to do too often. What doesn’t require our crazy brain should be automated,
to save what’s left of our neurons for more important tasks.

Most NORMAL mode motions we’ve seen in rank I can be repeated; we only need to add a count
(a number of repeat) as prefix.

For example, let’s open in Vim the file “functions.lua” from the book companion. Let’s put our
cursor on the following character:

local function restorePosition()

Let’s add a count of “2” to the “word”motion, by hitting 2w in NORMAL mode. The result:

local function restorePosition()

We’ve applied the motion “word” two times!

What about operators? If you move to the beginning of the line and then hit 2daw , you end up

65

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

with the following:

restorePosition()

We’ve deleted two words.

In fact, many NORMAL mode keystrokes apply a count by default if you don’t specify one; it’s
often “1”, for the keystroke to be applied only once.

If you apply a count to both a motion and an operator, they are multiplied. For example, if you
hit 2d3w , you’re effectively deleting 2 times 3 words, so 6 words.

Now, you might wonder: is it really useful? Do you see yourself counting words or other text-
objects on your screen to do what you want to do? If you experiment a bit with this concept,
you’ll see that it’s not easy to look ahead and know exactly what count you need.

That being said, you don’t need to know exactly what count you need. You can try to use a count
and, if it brings you closer to your goal, it’s already a win. You can then finish your task using a
couple more keystrokes.

The advice above stays true for almost everything you can do in NORMAL mode: if you don’t
manage to finish your task with a couple of keystrokes (even if you know it’s possible to do so),
that’s fine. Try to learn from the experience and you’ll get better.

Using count is also more useful when the count stays low. It’s easy to predict what will happen
when youwant to delete a couple of words, lines, or paragraphs. Not somuch if you try to delete
28 of them.

A last word about count: since many NORMAL mode keystrokes can take a count as prefix, I
won’t always specify when a count is possible in this book, for readability purposes. Thankfully,
Vim help always specify [count] when you can add one to a specific keystroke.

I’ll come back to this functionality throughout the bookwhen it’s themost useful, with practical
examples.

HelpYourself

:help count

66

It’s Playtime!

ExerciseB -Count: RepeatingKeystrokes

Open the file “functions.lua” from the book companion. Using the hjkl keys in
NORMAL mode, move your cursor to the following position:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <=

vim.fn.line("$") then↪

vim.cmd([[normal! g`"]])
end

end

For each step below, undo all your changes and come back to this initial cursor po-
sition.

1. Move to the third letter v of the current line, as follows:

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <=

vim.fn.line("$") then↪

2. Insert two new empty lines below the current one.
3. Delete in one operation the current line, as well as the two next ones.
4. Delete in one operation until the third word fn of the current line.

VimMessages (COMMAND-LINEmode)
Sometimes, Vim will speak to you; it will display somemessages at the bottom, where you nor-
mally write your Ex command or searches. For example, if you search for some pattern in your
current text but there is no match, Vim will tell you with verve and panache, as we saw at the
beginning of this rank.

Good news everyone: nothing is eternal. The displayedmessages will disappear if Vim needs to
display something else there, like another message, or the Ex command you want to run.

That’s unfortunate. Thankfully, if you want to bring back some old messages you might have
missed, you can use the following Ex command:

Ex command Short name Description

:message :mes Display the message history.

It can also be very useful to craft your ownmessages, to debug your vimrc for example. To do so,
you can use other Ex commands:

67

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

Ex command Description

:echo {expression} Display the output of {expression} ,
but doesn’t keep it in the message history.

:echomsg {expression} Display the output of {expression} ,
and keep it in the message history.

:echoerr {expression} Display the output of {expression} as an error message,
and keep it in the message history.

For example, you can try the following:

:echo 'hello'
:echomsg 'greetings' 'bonjour'

Bothmessage will be displayed at the bottom of Vim, but only greetings and bonjour will be
saved in the message history. You can even do more than displaying string of characters; you
can display actual Vimscript expressions. For example:

:echo 2+2
:echo system('ls')
:echomsg expand('%') 3+3 'hello'

HelpYourself

:help message-history

68

It’s Playtime!

Exercise C -TheMessageHistory

Using the hjkl keys in NORMAL mode, move your cursor at the beginning of
restorePosition :

#!/usr/bin/env lua

local function restorePosition()
if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <=

vim.fn.line("$") then↪

vim.cmd([[normal! g`"]])
end

end

You should go through the steps below one after the other, keeping the changes
you’ve made at each step. Use Vim search for each question.

1. Try to search for the pattern “emacs”. What message Vim gives you?
2. Howwould you display themessage history, including themessage displayed

in question 1?
3. How would you display the output of the shell command man ascii in Vim?

VimOptions (Customization)
Vim comes withmany options in order to customize the editor as we see fit. They are similar to
the settings you can fine-tune in many other editors. We’ve already seen some of them in rank
I; let’s now explore how they work.

SettingOptions
An option is similar to a variable which can be set to a specific type of value. This type can be:

• Boolean.
• Number.
• String of characters.

The Ex command you can use to set the value of an option depends on the option’s type.

HelpYourself

:help options

:help set-option

69

Displaying theValue ofAnOption

But before setting the value of an option, you’ll often need to check its current value. You can do
so with the following Ex command:

Ex command Description

:set {option}? Return the {option} ’s value.

For example, the Ex command :set clipboard? will give you the value of the option
'clipboard'. It’s a bit like asking the option for its value.

Setting aBoolean

Options with boolean values can simply be turned on and off. You can use the following Ex com-
mands to do so:

Ex command Description

:set {option} Set the {option} on.
:set no{option} Set the {option} off.
:set {option}! Toggle the {option} .

For example,we’ve turnedon theoption'number' in rank I, by adding the following to our vimrc:

Language Config

Vimscript set number

Lua vim.opt.number = true

If you run the following Ex command, you’ll turn it off:

Language Ex command

Vimscript :set nonumber

Lua :lua vim.opt.number = false

Setting aNumber

It’s easy to set an option accepting a number as value:

Ex command Description

:set {option}={value} Set the {value} to the {option} .

For example, you can hide or show the status line at the bottom of Vim thanks to the option
'laststatus':

70

Ex command Description

:set laststatus=1 Show the status line
:set laststatus=0 Hide the status line

It’s important to remember that you shouldn’t put spaces around the equal sign = . For example,
the following Ex command won’t work:

:set laststatus = 0

Setting a String of Characters

You can use one of the following Ex command to set an option accepting a string of characters as
value:

Ex command Description

:set {option}={value} Set the {value} to the {option} .
:set {option}+={value} Append a substring {value} , separated with a comma,

to the {option} ’s existing value.
:set {option}-={value} Delete the substring {value}

to the {option} ’s existing value.

The two last Ex commands are useful because, for some options, you can actually give them
more than one value. The value of the option itself will still be a string of characters, but divided
by commas to represent the different values.

For example, in rank I, we appended a value to the option 'clipboard' in our vimrc as follows:

Language Config

Vimscript set clipboard+=unnamedplus

Lua vim.opt.clipboard:append({'unnamedplus'})

Now, let’s try to run the following:

:set clipboard+=unnamed
:set clipboard?

The second Ex command should have added the value unnamed to the option 'clipboard'. Con-
gratulations! You successfully appended a new value to your option. One of your lifetime goal
has just been achieved.

To delete the value unnamedplus , you can run the following:

:set clipboard-=unnamedplus

71

To reset the option to only unnamedplus regardless of its current value, you can run the follow-
ing:

:set clipboard=unnamed

Setting Stringswith Spaces

When setting a string to an option, you’ll have to escape white spaces using backslashes \ . For
example:

:set formatprg=prettier\ --stdin-filepath\ %

That’s annoying really fast. Thankfully,we can also use the followingEx command to set a string
as value without the need to escape the whitespaces:

Ex command Description

:let &{option}='{value}' Set the {value} to the {option} .

For example, the two following Ex commands are equivalent:

:set formatprg=prettier\ --stdin-filepath\ %
:let &formatprg='prettier --stdin-filepath %'

Fortunately, you won’t have this problem in Lua:

:lua vim.opt.formatprg='prettier --stdin-filepath %'

We’ll see what the option 'formatprg' stands for in rank VII

HelpYourself

:help :let-option

Setting anOption to itsDefault Value

It’s easy to fiddlewith an option and change its value, butwhat if youwant to set the option back
to its default? You can use the following Ex command to do so:

Ex command Description

:set {option}& Reset the {option} to its default value.

For example, if you want to set the option 'laststatus' back to its default value, you can run
the following Ex command:

72

:set laststatus&

This is really useful when you begin to experiment with different options by changing their val-
ues.

SettingOptions Interactively

There’s another way to set Vim options:

Ex command Description

:options Open a new window to display and set Vim options.

You can then go through the list of options. If you hit <enter> on the option itself, you’ll open
Vim help. If you hit <enter> on the value of the option, you’ll be able to change it.

This Ex command can also be useful to discover new options; they’re even grouped by function-
ality!

That being said, the sheer number of options here can be daunting; don’t try to set all of them at
once, or you’ll go crazy by so many possibilities. I don’t want this book to make you insane.

Persisting anOption’s Value
As we already saw, if you want an option to always have the same customized value when you
open Vim, you need to set it in your vimrc. It’s an important concept, that’s why I’m repeating
myself a bit here.

Also remember: you don’t need the prefix : if you want to put some Ex commands in your
vimrc, like setting some options. Instead of writing :set laststatus=0 , you can write
set laststatus=0 . It’s a convention Vim users follow.

Searching anOption inVimHelp
All of that is great, but an important question remains:

How dowe knowwhat valuewe can give to a specific option? For example, how dowe know that
setting “1” to the option 'laststatus'will show the status line?

You can get this information (and muchmore) in Vim help. To search for an option specifically,
you’ll have to surround the name of your option with single quotes. For example:

:help 'number'
:help 'laststatus'

That’s also why I surround options with single quotes in this book (i.e 'laststatus'). It’s to
remind you of this important tip.

73

SomeUsefulOptions
To conclude this section, let’s look at a couple of useful options. They all accept a boolean as
value:

Option When “on” Default

'ignorecase' Search ignore the case sensitivity
(uppercase and lowercase characters are equivalent).

off

'smartcase' Search is case sensitive if there is one or more
uppercase in the pattern.
Needs the option ‘ignorecase’ to be on.

off

'hlsearch' Highlight the matching search pattern.
Use the Ex command :nohlsearch (or :noh)
to turn the highlight off.

off (Vim)
on (Neovim)

'autowriteall' Automatically write open files. off
'incsearch' Display the matches in the current buffer

while searching.
on

The options 'ignorecase', 'hlsearch', and 'smartcase'will be turned “on” in the vimrc of the
book companion, but feel free to do as you wish in your own vimrc.

Lastly, options have also short names, like Ex commands. For example, you can switch on the
option'ignorecase'with :set ignorecase or :set ic . That said, I’d encourageyou to always
write the long name of options in your vimrc, for a better readability.

We’ll see many more options throughout the book; you’ll have the occasion to set them up for
your own specific needs.

HelpYourself

:help option-list

74

https://github.com/Phantas0s/learning_to_play_vim_companion/tree/master/rank_ii
https://github.com/Phantas0s/learning_to_play_vim_companion/tree/master/rank_ii

It’s Playtime!

ExerciseD-VimOptions

Howwould you:

1. Get the value of the option 'filetype'?
2. Toggle the boolean value of the option 'number'?
3. Turn off the option 'compatible'?
4. Append the substring “S” to the existing value of the option 'shortmess'?
5. Delete the substring “S” to the existing value of the option 'shortmess'?
6. Set back the option 'shortmess'shortmess to its default value?
7. How would you find the short name of the option 'clipboard'?

75

Exercises
Exercise 1 - SearchHighlighting

Open the file “functions.lua” from the book companion.

You should go through the steps below one after the other, keeping the changes you’ve made at
each step.

1. Search for the word “vim”.
2. The matching pattern vim should now be highlighted. Turn off the highlighting.
3. If you search for another word, do you think it will be highlighted?
4. Disable the highlighting for all future search.

Exercise 2 -MoreVimSearch

Open thefile “functions.lua” from the book companion. Using the hjkl keys inNORMALmode,
move your cursor to the following position:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then
vim.cmd([[normal! g`"]])

end
end

You should go through the steps below one after the other, keeping the changes you’ve made at
each step. Use Vim search for each step.

1. Move your cursor to this position:

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then

2. Move your cursor to this position:

vim.cmd([[normal! g`"]])

3. Move your cursor to this position:

if vim.fn.line("'\"") > 1

4. Yank everything until the word then at the end of the line.
5. Delete everything until the word then at the end of the line.

Exercise 3 -VimCount

Open Vim in a new buffer.

You should go through the steps below one after the other. Use a count for each of them, and
keep the changes you’ve made at each step.

76

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua
https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

1. Insert four times the word “vim” separated with spaces, and come back to the beginning
of the line.

2. Select the 3 next words with only the spaces between the words. Cancel the selection.
3. Yank the current line and copy it three times.
4. Create four new lines: insert * at the beginning of each odd line, and let the even lines

blank.

Beyond theRank
These exercises are more difficult. The solutions will often involve some complementary con-
cepts not seen in this rank.

Exercise4-VimMessages

Open thefile “functions.lua” from the book companion. Using the hjkl keys inNORMALmode,
move your cursor to the following position:

local function restorePosition()

if vim.fn.line("'\"") > 1 and vim.fn.line("'\"") <= vim.fn.line("$") then
vim.cmd([[normal! g`"]])

end
end

You should go through the steps below one after the other, keeping the changes you’ve made at
each step.

1. Display the output of the shell command file with the current file as argument.
2. After pressing <enter> to hide the display of the previous question, display it again.
3. Clear all messages from the message history.
4. Display the last error message only.
5. Write an entry in themessage history including the full path of the current file, its filetype,
the current line number, and the current word under the cursor.

Exercise 5 - SettingVimOptions

1. How would you turn off the option 'expandtab' only for the current buffer?
2. How would you verify that the option 'shortmess' has a local value?
3. How would you easily set the option 'listchars' to the value tab:� ,trail:· , but only
locally to the current window?

4. Howwould you search in Vim help for the option 't_SI'?
5. Howwould you easily set the option 't_SI' to \e[6 q , and 't_EI' to \e[2 q ? What hap-
pens?

77

https://github.com/Phantas0s/learning_to_play_vim_companion/blob/master/functions.lua

Exercises - Solutions
ExerciseA-VimSearch

Question Keystroke Result

start #!/usr/bin/env lua

1 /vim<enter> if vim.fn.line("'\"") > 1 and vim.fn.line("'\"")

2 n if vim.fn.line("'\"") > 1 and vim.fn.line("'\"")

3 N if vim.fn.line("'\"") > 1 and vim.fn.line("'\"")

4 k* local [f]{.mne}unction deleteTrailingWS()

ExerciseB-Count: RepeatingKeystrokes

Question Keystroke Result

start if vim.fn.line("'\"") > 1

1 3fv <= vim.fn.line("$") then

2 2o<esc>

3 3dd end

4 d3/fn fn.line("$") then

Exercise C -TheMessageHistory

1. Afterhitting /emacs<enter> , Vimwill displayanerrormessage E486: Pattern not found: emacs .
2. The Ex command :message will give you the message history.
3.
4. :echo system('man ascii')

ExerciseD-Vim’sOptions

1. :set filetype? or :set ft?

2. :set number! or :set nu!

3. :set nocompatible or :set nocp

4. :set shortmess+=S or :set shm+=S

5. :set shortmess-=S or :set shm-=S

6. :set shortmess& or :set shm&

7. Look at Vim help with :help 'clipboard' . Its short name is 'cb'.

Exercise 1 - SearchHighlighting

1. Execute /vim .
2. Execute :nohlsearch or :nohl .
3. Yes. Searching after running :nohl will switch back the search highlighting.
4. Execute :set nohlsearch or :set hlsearch! .

78

Exercise 2 -MoreVimSearch

Question Keystroke Result

start local function restorePosition()

1 /line<esc>2n vim.fn.line("$") then

2 /vim vim.cmd([[normal! g`"]])

3 ?line<esc>2n if vim.fn.line("'\"") > 1

4 y/then if vim.fn.line("'\"") > 1

5 d/then if vim.fn.then

Exercise 3 -VimCount

1. Hit 4ivim <esc>^ in NORMAL mode.
2. Hit v5iw<esc> in NORMAL mode - each space count as a word here.
3. Hit yy3p in NORMALMODE
4. Hit 2o*<enter><esc> in NORMAL mode.

Exercise4-VimMessages

1. :echo system('file ' . expand('%'))

2. The output of external commands is not saved in the message history. But can hit g< in
NORMAL mode to display back the last output, wherever it comes from.

3. :messages clear

4. :echo v:errmsg

5. :echomsg expand('%:p') &l:filetype line('.') expand('<cword>')

Exercise 5 - SettingVimOptions

1. :setlocal noexpandtab

2. :help 'shortmess' . The option is only global, it can’t be set locally.
3. :let &l:listchars='tab:> ,trail:-,nbsp:+'

4. In Vim, you can do the usual :help 't_SI' . Surprisingly, it doesn’t work in Neovim. You
need to do :help t_SI there.

5. You can set these two options as follows:

let &t_SI = "\e[6 q"
let &t_EI = "\e[2 q"

It will normally give you a cursor block in NORMAL mode, and a cursor line in INSERTmode.

79

